This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064907 #19 Jul 31 2023 20:38:34 %S A064907 341,583,731,793,893,1067,1469,1793,1807,1943,2201,2323,2483,2519, %T A064907 2761,3043,3071,3487,3497,3781,4213,4439,4511,4777,4841,4849,4939, %U A064907 5497,5809,5933,5947,6511,6539,6989,7093,7117,7391,7493,7601,7613,7783,7891,7967 %N A064907 Semiprimes p1*p2 such that p2 mod p1 = 9, with p2 > p1. %H A064907 John Cerkan, <a href="/A064907/b064907.txt">Table of n, a(n) for n = 1..10000</a> %t A064907 spQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},PrimeOmega[n]==2&&Mod[ fi[[2]],fi[[1]]]==9]; Select[Range[8000],spQ]//Quiet (* _Harvey P. Dale_, Aug 02 2019 *) %o A064907 (Python) %o A064907 from sympy import factorint %o A064907 def is_A064907(n): %o A064907 f = factorint(n) %o A064907 return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 9) %o A064907 def list_A064907(cnt): %o A064907 inx = 0 %o A064907 n = 1 %o A064907 an = [] %o A064907 while inx < cnt: %o A064907 if is_A064907(n): %o A064907 an.append(n) %o A064907 inx += 1 %o A064907 n += 2 %o A064907 return an #_John Cerkan_, Apr 14 2018 %o A064907 (PARI) isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 9); \\ _Michel Marcus_, Apr 16 2018 %Y A064907 Cf. A001358 (p2 mod p1 = 0), A064899-A064911. %K A064907 nonn %O A064907 1,1 %A A064907 _Patrick De Geest_, Oct 13 2001 %E A064907 Offset changed by _John Cerkan_, Apr 12 2018