cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064914 Number of ordered biquanimous partitions of 2n.

This page as a plain text file.
%I A064914 #10 Apr 21 2024 10:00:39
%S A064914 1,1,5,23,105,449,1902,7828,31976,129200,520425,2088217,8371186,
%T A064914 33514797,134140430,536699674,2147154667,8589198795,34358341823,
%U A064914 137435830265,549749857574,2199010044813,8796067657649,35184315676573,140737380485376,562949713881526
%N A064914 Number of ordered biquanimous partitions of 2n.
%C A064914 A biquanimous partition is one that can be bisected into two equal sized parts: e.g. 3+2+1 is a biquanimous partition of 6 as it contains 3 and 2+1, but 5+1 is not.
%e A064914 From _Gus Wiseman_, Apr 19 2024: (Start)
%e A064914 The a(0) = 1 through a(3) = 23 biquanimous compositions:
%e A064914   ()  (11)  (22)    (33)
%e A064914             (112)   (123)
%e A064914             (121)   (132)
%e A064914             (211)   (213)
%e A064914             (1111)  (231)
%e A064914                     (312)
%e A064914                     (321)
%e A064914                     (1113)
%e A064914                     (1122)
%e A064914                     (1131)
%e A064914                     (1212)
%e A064914                     (1221)
%e A064914                     (1311)
%e A064914                     (2112)
%e A064914                     (2121)
%e A064914                     (2211)
%e A064914                     (3111)
%e A064914                     (11112)
%e A064914                     (11121)
%e A064914                     (11211)
%e A064914                     (12111)
%e A064914                     (21111)
%e A064914                     (111111)
%e A064914 (End)
%t A064914 Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], MemberQ[Total/@Subsets[#],n]&]],{n,0,5}] (* _Gus Wiseman_, Apr 19 2024 *)
%Y A064914 The unordered version (integer partitions) is A002219, ranks A357976.
%Y A064914 The unordered complement is A371795, even case A006827, ranks A371731.
%Y A064914 The complement is counted by A371956.
%Y A064914 These compositions have ranks A372120, complement A372119.
%Y A064914 A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
%Y A064914 A321142 and A371794 count non-biquanimous strict partitions.
%Y A064914 A371791 counts biquanimous sets, differences A232466.
%Y A064914 A371792 counts non-biquanimous sets, differences A371793.
%Y A064914 Cf. A027187, A035470, A357879, A367094, A371781, A371782, A371783.
%K A064914 nonn
%O A064914 0,3
%A A064914 _Christian G. Bower_, Oct 12 2001
%E A064914 More terms from _Alois P. Heinz_, Jun 12 2017