This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064914 #10 Apr 21 2024 10:00:39 %S A064914 1,1,5,23,105,449,1902,7828,31976,129200,520425,2088217,8371186, %T A064914 33514797,134140430,536699674,2147154667,8589198795,34358341823, %U A064914 137435830265,549749857574,2199010044813,8796067657649,35184315676573,140737380485376,562949713881526 %N A064914 Number of ordered biquanimous partitions of 2n. %C A064914 A biquanimous partition is one that can be bisected into two equal sized parts: e.g. 3+2+1 is a biquanimous partition of 6 as it contains 3 and 2+1, but 5+1 is not. %e A064914 From _Gus Wiseman_, Apr 19 2024: (Start) %e A064914 The a(0) = 1 through a(3) = 23 biquanimous compositions: %e A064914 () (11) (22) (33) %e A064914 (112) (123) %e A064914 (121) (132) %e A064914 (211) (213) %e A064914 (1111) (231) %e A064914 (312) %e A064914 (321) %e A064914 (1113) %e A064914 (1122) %e A064914 (1131) %e A064914 (1212) %e A064914 (1221) %e A064914 (1311) %e A064914 (2112) %e A064914 (2121) %e A064914 (2211) %e A064914 (3111) %e A064914 (11112) %e A064914 (11121) %e A064914 (11211) %e A064914 (12111) %e A064914 (21111) %e A064914 (111111) %e A064914 (End) %t A064914 Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], MemberQ[Total/@Subsets[#],n]&]],{n,0,5}] (* _Gus Wiseman_, Apr 19 2024 *) %Y A064914 The unordered version (integer partitions) is A002219, ranks A357976. %Y A064914 The unordered complement is A371795, even case A006827, ranks A371731. %Y A064914 The complement is counted by A371956. %Y A064914 These compositions have ranks A372120, complement A372119. %Y A064914 A237258 (aerated) counts biquanimous strict partitions, ranks A357854. %Y A064914 A321142 and A371794 count non-biquanimous strict partitions. %Y A064914 A371791 counts biquanimous sets, differences A232466. %Y A064914 A371792 counts non-biquanimous sets, differences A371793. %Y A064914 Cf. A027187, A035470, A357879, A367094, A371781, A371782, A371783. %K A064914 nonn %O A064914 0,3 %A A064914 _Christian G. Bower_, Oct 12 2001 %E A064914 More terms from _Alois P. Heinz_, Jun 12 2017