cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064935 Numbers k such that (k+3)^(k+2) mod (k+1) = k.

This page as a plain text file.
%I A064935 #23 Feb 14 2025 03:36:05
%S A064935 4,64,376,1188,1468,25804,58588,134944,137344,170584,272608,285388,
%T A064935 420208,538732,592408,618448,680704,778804,1163064,1520440,1700944,
%U A064935 2099200,2831008,4020028,4174168,4516108,5059888,5215768,5447272
%N A064935 Numbers k such that (k+3)^(k+2) mod (k+1) = k.
%C A064935 From _Robert Israel_, Feb 13 2025: (Start)
%C A064935   Numbers k such that 2^(k+2) == -1 (mod k+1).
%C A064935   All terms are divisible by 4.
%C A064935   The only term k where k+1 is prime is 4.
%C A064935 (End)
%H A064935 Robert Israel, <a href="/A064935/b064935.txt">Table of n, a(n) for n = 1..350</a>
%e A064935 (4+3)^(4+2) mod (4+1) = 7^6 mod 5 = 117649 mod 5 = 4, so 4 is a term.
%p A064935 filter:= proc(k) 2 &^(k+2) mod (k+1) = k end proc:
%p A064935 select(filter, [seq(i,i=4..10^7,4)]); # _Robert Israel_, Feb 13 2025
%o A064935 (PARI) isok(k) = Mod(k+3, k+1)^(k+2) == k; \\ _Michel Marcus_, Jul 12 2021
%Y A064935 Equals A055685(n+1) - 2.
%K A064935 nonn
%O A064935 1,1
%A A064935 Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 26 2001