cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064936 Primes p such that gcd(p, prime(p)^2 - 1) does not equal 1.

This page as a plain text file.
%I A064936 #15 May 12 2024 11:47:36
%S A064936 2,3,5,181,40087,251737,335276334037181,115423110870118057,
%T A064936 115423110870118561
%N A064936 Primes p such that gcd(p, prime(p)^2 - 1) does not equal 1.
%C A064936 No further terms up to 41161739. - _Harvey P. Dale_, Dec 23 2011
%C A064936 No further terms up to 250000000. - _Sean A. Irvine_, Aug 01 2023
%C A064936 From _Jason Yuen_, Apr 21 2024: (Start)
%C A064936 Primes p such that prime(p)^2 == 1 (mod p).
%C A064936 Prime terms of A023143 or A045924.
%C A064936 No further terms up to 4*10^19. (End)
%e A064936 5 belongs in the sequence because gcd(5, P_5^2 -1) = gcd(5, 120) = 5.
%t A064936 Do[ If[ GCD[ Prime[n], Prime[ Prime[n]]^2 - 1] != 1, Print[ Prime[n]] ], {n, 1, 10^6} ]
%Y A064936 Cf. A064830, A023143, A045924.
%K A064936 nonn,more
%O A064936 1,1
%A A064936 _Robert G. Wilson v_, Oct 26 2001