A064942 Decimal numbers n such that after possibly prefixing leading 0's to n, the resulting number n' can be broken into 2 numbers of equal length, n' = xy, such that x^2+y^2 = n (y may also have leading zeros).
1, 1233, 8833, 10100, 990100, 5882353, 94122353, 99009901, 100010000, 1765038125, 2584043776, 7416043776, 8235038125, 9901009901, 48600220401, 116788321168, 123288328768, 601300773101, 876712328768, 883212321168, 990100990100
Offset: 1
Examples
8833 = 88^2 + 33^2, 5882353 = 0588^2 + 2353^2.
Links
- IBM Corp., IBM March 2000 Challenge solution
- C. Rivera, Problem 104 of the prime puzzle pages with other approaches
Crossrefs
Programs
-
Maple
with (numtheory): for m from 1 to 10 do: for i in sum2sqr(10^(2*m)+1) do: if i[1] > 1 and i[1] < 10^m then if type(i[1],odd) then a := (i[2]+10^m)/2: b := (i[1]+1)/2: else a := (i[1]+10^m)/2: b := (i[2]+1)/2: fi: print("Length =", 2*m, "Solution =", (10^m-a)*10^m+b): print(Length = 2*m, Solution = a*10^m+b): fi: od: od:
Extensions
Edited by N. J. A. Sloane, Jul 31 2007
Comments