cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065003 Not McNugget numbers.

This page as a plain text file.
%I A065003 #29 Feb 16 2025 08:32:45
%S A065003 1,2,3,4,5,7,8,10,11,13,14,16,17,19,22,23,25,28,31,34,37,43
%N A065003 Not McNugget numbers.
%C A065003 A McNugget number has the form 6x + 9y + 20z for nonnegative integers x, y, z.
%C A065003 A214772(a(n)) = 0. - _Reinhard Zumkeller_, Jul 28 2012
%D A065003 Eric Weisstein, Concise Encyclopedia of Mathematics, p. 1151.
%H A065003 Agustín Moreno Cañadas, Juan David Camacho, and Isaías David Marín Gaviria, <a href="https://arxiv.org/abs/2105.11529">Relationships Between Mutations of Brauer Configuration Algebras and Some Diophantine Equations</a>, arXiv:2105.11529 [math.RT], 2021, see p. 2.
%H A065003 Scott Chapman, Christopher O'Neill, <a href="https://arxiv.org/abs/1709.01606">Factoring in the Chicken McNugget monoid</a>, arXiv:1709.01606 [math.AC], 2017.
%H A065003 James Grime and Brady Haran, <a href="http://www.youtube.com/watch?v=vNTSugyS038">How to order 43 Chicken McNuggets</a>, Numberphile video (2012)
%H A065003 C. U. Jensen and A. Thorup, <a href="https://doi.org/10.1016/j.jpaa.2014.05.013">Gorenstein orders</a>, Journal of Pure and Applied Algebra, Volume 219, Issue 3, March 2015, Pages 551-562. See Example 7.1. - _N. J. A. Sloane_, Jul 22 2014
%H A065003 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/McNuggetNumber.html">McNugget Numbers</a>.
%H A065003 Wikipedia, <a href="http://en.wikipedia.org/wiki/Coin_problem">Coin problem</a>
%t A065003 Select[Range[43], Length@FrobeniusSolve[{6, 9, 20}, #] == 0 &] (* _Arkadiusz Wesolowski_, Feb 20 2013 *)
%o A065003 (Haskell)
%o A065003 import Data.List (elemIndices)
%o A065003 a065003 n = a065003_list !! n
%o A065003 a065003_list = elemIndices 0 $ map a214772 [0..43]
%o A065003 -- _Reinhard Zumkeller_, Jul 28 2012
%o A065003 (PARI) is(n)=forstep(k=n,6,-20,if(k%3==0, return(0)));n%20>0 \\ _Charles R Greathouse IV_, May 05 2013
%Y A065003 Cf. A214777 (complement).
%K A065003 easy,fini,full,nonn
%O A065003 1,2
%A A065003 Karl Sabbagh (karl.sabbagh(AT)btinternet.com), Nov 01 2001