cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065017 Primes of the form p*q + p + q, where (p, q=p+2) are twin primes.

This page as a plain text file.
%I A065017 #11 Jun 18 2018 03:25:36
%S A065017 23,47,167,359,1847,3719,10607,19319,97967,177239,273527,657719,
%T A065017 1042439,1104599,1329407,1515359,1745039,2042039,4464767,5013119,
%U A065017 5148359,9740639,11095559,11377127,12538679,16024007,16410599,16752647
%N A065017 Primes of the form p*q + p + q, where (p, q=p+2) are twin primes.
%C A065017 The resulting prime can never be a twin prime since the odd number preceding it is divisible by three and the following odd number is a perfect square.
%H A065017 Harry J. Smith, <a href="/A065017/b065017.txt">Table of n, a(n) for n = 1..1000</a>
%F A065017 p^2 + 4*p + 2.
%e A065017 (3*5) + (3+5) = 23.
%t A065017 NextPrim[n_] := Block[ {k = n + 1}, While[ !PrimeQ[k], k++ ]; Return[k]]; k = 1; Do[k = NextPrim[k]; If[ PrimeQ[k + 2], p = k*(k + 2) + 2k + 2; If[ PrimeQ[p], Print[p]]], {n, 1, 700} ]
%t A065017 f[n_]:=Module[{x=Total[n]+Times@@n},If[PrimeQ[x],x,0]]; Select[f/@ (Select[Partition[Prime[Range[700]],2,1],Last[#]-First[#]==2&]), #!=0&] (* _Harvey P. Dale_, May 11 2011 *)
%o A065017 (PARI) { n=p=0; for (m=1, 10^9, p=nextprime(p + 1); if (isprime(q=p + 2) && isprime(a=p*q + p + q), write("b065017.txt", n++, " ", a); if (n==1000, return)) ) } \\ _Harry J. Smith_, Oct 03 2009
%Y A065017 Cf. A049001, A049002.
%K A065017 nonn
%O A065017 1,1
%A A065017 Stephan Wagler (stephanwagler(AT)aol.com), Nov 01 2001
%E A065017 Offset changed from 0 to 1 by _Harry J. Smith_, Oct 03 2009