This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065033 #49 Aug 05 2025 13:27:11 %S A065033 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14, %T A065033 15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,26, %U A065033 26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,35 %N A065033 1 appears three times, other numbers twice. %C A065033 Gives the number of terms in n-th row of many common tables. %C A065033 Number of partitions of the (n+1)-th Fibonacci number into distinct Fibonacci numbers: a(n) = A000119(A000045(n)), see also A098641. - _Reinhard Zumkeller_, Apr 24 2005 %C A065033 a(n) = length of run n+1 of consecutive 4s in A254338. - _Reinhard Zumkeller_, Feb 27 2015 %C A065033 This is the Engel expansion of A070910 + A096789. - _Benedict W. J. Irwin_, Dec 16 2016 %H A065033 Harry J. Smith, <a href="/A065033/b065033.txt">Table of n, a(n) for n = 0..1000</a> %H A065033 Andrei Asinowski, Cyril Banderier, and Valerie Roitner, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/several_patterns.pdf">Generating functions for lattice paths with several forbidden patterns</a>, (2019). %H A065033 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A065033 From _Philippe Deléham_, Sep 28 2006: (Start) %F A065033 a(n) = a(n-1)+a(n-2)-a(n-3) for n>3. %F A065033 G.f.: (1-x^2+x^3)/(1-x-x^2+x^3). (End) %F A065033 a(n) = floor((n+1)/2) + 0^n. - _Reinhard Zumkeller_, Feb 27 2015 %F A065033 E.g.f.: (2 + exp(x)*x + sinh(x))/2. - _Stefano Spezia_, Aug 05 2025 %t A065033 Array[Floor[#/2] &, 61] /. 0 -> 1 (* _Michael De Vlieger_, Mar 10 2020 *) %o A065033 (PARI) a(n) = { if (n<1, n==0, (n+1)\2) } \\ _Harry J. Smith_, Oct 03 2009 %o A065033 (Haskell) %o A065033 a065033 n = 0 ^ n + div (n + 1) 2 -- _Reinhard Zumkeller_, Feb 27 2015 %Y A065033 Cf. A004526, A008619. %Y A065033 Cf. A254338. %K A065033 nonn,easy %O A065033 0,4 %A A065033 _N. J. A. Sloane_, Nov 04 2001