This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065034 #60 May 29 2025 16:34:17 %S A065034 3,4,8,19,48,124,323,844,2208,5779,15128,39604,103683,271444,710648, %T A065034 1860499,4870848,12752044,33385283,87403804,228826128,599074579, %U A065034 1568397608,4106118244,10749957123,28143753124,73681302248,192900153619,505019158608,1322157322204 %N A065034 a(n) = Lucas(2*n) + 1. %H A065034 Harry J. Smith, <a href="/A065034/b065034.txt">Table of n, a(n) for n = 0..200</a> %H A065034 Sela Fried, <a href="https://arxiv.org/abs/2505.14196">Even-up words and their variants</a>, arXiv:2505.14196 [math.CO], 2025. See p. 8. %H A065034 Markus Grassl and Andrew J. Scott, <a href="https://arxiv.org/abs/1707.02944">Fibonacci-Lucas SIC-POVMs</a>, arXiv:1707.02944 [quant-ph], 2017. %H A065034 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,1). %F A065034 a(n) = F(2*n+1) + F(2*n-1) + 1 = A005248(n) + 1. %F A065034 From _R. J. Mathar_, Jul 18 2009: (Start) %F A065034 a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3). %F A065034 G.f.: 1/(1-x) + (2-3*x)/(1-3*x+x^2). (End) %F A065034 a(n) = 1 + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n. - _Colin Barker_, Nov 01 2016 %p A065034 a:= n-> (<<0|1>, <1|1>>^(2*n). <<2,1>>)[1, 1]+1: %p A065034 seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 01 2016 %t A065034 LucasL[2 Range[30]]+1 (* _Harvey P. Dale_, Oct 21 2011 *) %t A065034 LinearRecurrence[{4, -4, 1}, {3, 4, 8}, 30] (* _Jean-François Alcover_, Jan 08 2019 *) %o A065034 (PARI) a(n) = { fibonacci(2*n + 1) + fibonacci(2*n - 1) + 1 } \\ _Harry J. Smith_, Oct 03 2009 %o A065034 (PARI) Vec((3-2*x)*(1-2*x)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ _Colin Barker_, Nov 01 2016 %o A065034 (Magma) [ Lucas(2*n) + 1: n in [0..210]]; // _Vincenzo Librandi_, Apr 15 2011 %Y A065034 Cf. A000032, A000045, A005248, A005592. %Y A065034 Cf. A002878 (first differences). - _R. J. Mathar_, Jul 18 2009 %K A065034 nonn,easy %O A065034 0,1 %A A065034 _N. J. A. Sloane_, Nov 04 2001 %E A065034 a(0)=3 prepended by _Joerg Arndt_, Nov 01 2016