cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065043 Characteristic function of the numbers with an even number of prime factors (counted with multiplicity): a(n) = 1 if n = A028260(k) for some k then 1 else 0.

This page as a plain text file.
%I A065043 #59 Jan 31 2024 08:44:49
%S A065043 1,0,0,1,0,1,0,0,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,1,1,
%T A065043 1,1,0,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,
%U A065043 1,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0
%N A065043 Characteristic function of the numbers with an even number of prime factors (counted with multiplicity): a(n) = 1 if n = A028260(k) for some k then 1 else 0.
%H A065043 Antti Karttunen, <a href="/A065043/b065043.txt">Table of n, a(n) for n = 1..65537</a> (first 1000 terms from Harry J. Smith)
%H A065043 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H A065043 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A065043 a(n) = 1 - A001222(n) mod 2.
%F A065043 a(n) = A007421(n) - 1.
%F A065043 a(n) = 1 - A066829(n).
%F A065043 a(A028260(k)) = 1 and a(A026424(k)) = 0 for all k.
%F A065043 Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/(2*zeta(s)). - _Enrique Pérez Herrero_, Jul 06 2012
%F A065043 a(n) = (A008836(n) + 1)/2. - _Enrique Pérez Herrero_, Jul 07 2012
%F A065043 a(n) = A001222(2n) mod 2. - _Wesley Ivan Hurt_, Jun 22 2013
%F A065043 G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = Sum_{n>=1} x^(n^2)/(1 - x^n). - _Ilya Gutkovskiy_, Apr 25 2017
%F A065043 From _Antti Karttunen_, Dec 01 2022: (Start)
%F A065043 For x, y >= 1, a(x*y) = 1 - abs(a(x)-a(y)).
%F A065043 a(n) = a(A046523(n)) = A356163(A003961(n)).
%F A065043 a(n) = A000035(A356163(n)+A347102(n)).
%F A065043 a(n) = A010052(n) + A353669(n).
%F A065043 a(n) = A353555(n) + A353557(n).
%F A065043 a(n) = A358750(n) + A358752(n).
%F A065043 a(n) = A353374(n) + A358775(n).
%F A065043 a(n) >= A356170(n).
%F A065043 (End)
%p A065043 A065043 := proc(n)
%p A065043     if type(numtheory[bigomega](n),'even') then
%p A065043         1;
%p A065043     else
%p A065043         0;
%p A065043     end if;
%p A065043 end proc: # _R. J. Mathar_, Jun 26 2013
%t A065043 Table[(LiouvilleLambda[n]+1)/2,{n,1,20}] (* _Enrique Pérez Herrero_, Jul 07 2012 *)
%o A065043 (PARI) { for (n=1, 1000, a=1 - bigomega(n)%2; write("b065043.txt", n, " ", a) ) } \\ _Harry J. Smith_, Oct 04 2009
%o A065043 (PARI) A065043(n) = (1 - (bigomega(n)%2)); \\ _Antti Karttunen_, Apr 19 2022
%o A065043 (Python)
%o A065043 from operator import ixor
%o A065043 from functools import reduce
%o A065043 from sympy import factorint
%o A065043 def A065043(n): return (reduce(ixor, factorint(n).values(),0)&1)^1 # _Chai Wah Wu_, Jan 01 2023
%Y A065043 Characteristic function of A028260 (positions of 1's). Cf. also A026424 (positions of 0's) and A320655.
%Y A065043 One less than A007421.
%Y A065043 Cf. A003961, A008836, A010052, A038548 (inverse Möbius transform), A046523, A055037 (partial sums), A343784, A347102, A353337, A353338, A353555, A353557, A353629, A353669, A358750, A358752, A353374, A358775, A356163, A356170.
%Y A065043 Cf. also A066829, A353374.
%K A065043 nonn
%O A065043 1,1
%A A065043 _Reinhard Zumkeller_, Nov 05 2001
%E A065043 Corrected by _Charles R Greathouse IV_, Sep 02 2009