This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065047 #18 Nov 19 2024 01:05:48 %S A065047 3,5,13,29,37,43,71,83,101,113,163,193,211,223,257,311,317,347,479, %T A065047 509,547,577,613,643,673,709,787,823,853,877,883,907,1031,1061,1181, %U A065047 1223,1259,1283,1409,1451,1481,1493,1499,1511,1523,1559,1583,1721,1871,1973 %N A065047 Primes which when written in base 2 and prepended with a 1 produce a prime. %C A065047 Primes p such that p and 2^k + p (where k is the smallest power of 2 such that 2^k > p) are primes. - _Davide Rotondo_, Nov 06 2024 %H A065047 Harry J. Smith, <a href="/A065047/b065047.txt">Table of n, a(n) for n = 1..1000</a> %e A065047 13 is in the sequence because 13_10 = 1101_2 and prepending a 1 gives 11101_2 = 29_10, which is a prime. %t A065047 Do[p = Prime[n]; d = IntegerDigits[p, 2]; If[ PrimeQ[ FromDigits[ Prepend[d, 1], 2]], Print[p]], {n, 1, 350} ] %t A065047 Select[Prime[Range[300]],PrimeQ[FromDigits[Join[{1},IntegerDigits[#,2]],2]]&] (* _Harvey P. Dale_, Apr 10 2023 *) %o A065047 (PARI) { n=0; t=log(2); for (m=1, 10^9, p=prime(m); if (isprime(p + 2^(1 + log(p)\t)), write("b065047.txt", n++, " ", p); if (n==1000, return)) ) } \\ _Harry J. Smith_, Oct 05 2009 %Y A065047 Cf. A004755, A059459. %K A065047 base,easy,nonn %O A065047 1,1 %A A065047 _Robert G. Wilson v_, Nov 05 2001