This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065060 #10 Feb 09 2017 08:27:04 %S A065060 2,3,7,19,79,101,113,163,173,199,223,239,251,263,311,349,443,463,577, %T A065060 593,641,659,743,839,881,1033,1097,1109,1151,1373,1399,1429,1439,1459, %U A065060 1627,1693,1831,1871,2029,2069,2137,2237,2287,2423,2473,2617,2687,2713 %N A065060 Primes p such that prime(p) - pi(p) is a prime. %H A065060 Harry J. Smith, <a href="/A065060/b065060.txt">Table of n, a(n) for n = 1..1000</a> %p A065060 with(numtheory): A065060:=n->`if`(isprime(n) and isprime(ithprime(n)-pi(n)), n, NULL): seq(A065060(n), n=1..10^4); # _Wesley Ivan Hurt_, Feb 09 2017 %t A065060 Prime[ Select[ Range[500], PrimeQ[ Prime[ Prime[ # ]] - PrimePi[ Prime[ # ]]] & ]] %o A065060 (PARI) { n=0; default(primelimit, 4294965247); for (m=1, 10^9, p=prime(m); if (isprime(prime(p) - primepi(p)), write("b065060.txt", n++, " ", p); if (n==1000, return)) ) } \\ _Harry J. Smith_, Oct 05 2009 %Y A065060 Cf. A000040 (primes), A000720 (pi), A065046 (prime(n) - pi(n) is a prime). %K A065060 easy,nonn %O A065060 1,1 %A A065060 _Robert G. Wilson v_, Nov 06 2001