cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065084 Smallest prime having alternating bit sum (A065359) equal to n.

This page as a plain text file.
%I A065084 #17 Dec 08 2023 11:15:14
%S A065084 3,7,5,0,277,1109,0,17749,70997,0,1398037,5526869,0,72701269,
%T A065084 357915989,0,5659514197,22902297941,0,297784399189,1465948394837,0,
%U A065084 23456248042837,89426945725781,0,1430831131612501,6004798429418837,0
%N A065084 Smallest prime having alternating bit sum (A065359) equal to n.
%C A065084 Only 3d = 11b has an alternating sum of 0 and alternated sums of 3*k are impossible for primes.
%H A065084 Washington Bomfim, <a href="/A065084/b065084.txt">Table of n, a(n) for n = 0..121</a>
%e A065084 a(4)=277 since the smallest number having alternating bit sum n is (4^n-1)/3, which for n = 4 is 85. Because 85 =(1010101)2 is composite, the next number with alternating bit sum 4 is the prime (100010101)2 = 277. - _Washington Bomfim_, Jan 21 2011
%t A065084 f[n_] := (d = Reverse[ IntegerDigits[n, 2]]; l = Length[d]; s = 0; k = 1; While[k < l + 1, s = s - (-1)^k*d[[k]]; k++ ]; s); a = Table[ f[ Prime[n]], {n, 1, 10^6} ]; b = Table[0, {13} ];
%t A065084 Do[ If[ a[[n]] > -1 && b[[a[[n]] + 1]] == 0, b[[a[[n]] + 1]] = Prime[n]], {n, 1, 10^6} ]; b
%o A065084 (PARI)M(n)={return((4^n - 1)/3 + 2^(2*n) - 2^(2*n-2))};
%o A065084 T(n,k)={pow2=2^(2*n-2);k+=pow2; for(j=1,n-2,pow2/=4; k-=pow2;if(isprime(k),return(k),k+=pow2;)); return(k)};
%o A065084 T2(n,k)={pow2=2; for(j=1,n, k+=pow2;if(isprime(k),return(k),k-=pow2; pow2*=4)); return(k)};
%o A065084 print("0 3");print("1 7");print("2 5");print("3 0");for(n=4,127,if(n%3==0,print(n," 0"),k=M(n);if(isprime(k),print(n," ",k),k=T(n,k);if(isprime(k),print(n," ",k),k=T2(n,k);if(isprime(k),print(n," ",k),print("a(",n,") not found")))))) \\ _Washington Bomfim_, Jan 22 2011
%Y A065084 Cf. A065359, A002450, A065085.
%K A065084 base,nonn
%O A065084 0,1
%A A065084 _Robert G. Wilson v_, Nov 09 2001
%E A065084 a(14)-a(27) from _Washington Bomfim_, Jan 21 2011