cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065103 A level 11 weight 5 form.

This page as a plain text file.
%I A065103 #18 Jul 01 2025 01:00:54
%S A065103 1,15,82,241,626,1230,2400,3855,6643,9390,14641,19762,28560,36000,
%T A065103 51332,61681,83520,99645,130320,150866,196800,219615,279842,316110,
%U A065103 391251,428400,538084,578400,707280,769980,923522,986895,1200562
%N A065103 A level 11 weight 5 form.
%C A065103 Multiplicative because convolution of multiplicative functions. - _Michael Somos_, Jun 07 2005
%H A065103 G. C. Greubel, <a href="/A065103/b065103.txt">Table of n, a(n) for n = 1..5000</a>
%H A065103 Ken Ono, <a href="https://doi.org/10.1006/jnth.1998.2354">On the Circular Summation of the Eleventh Powers of Ramanujan's Theta Function</a>, Journal of Number Theory, Volume 76, Issue 1, May 1999, Pages 62-65.
%F A065103 a(n) = Sum_{d | n} Kronecker(d/11)*(n/d)^4.
%t A065103 a[n_]:= If[n < 0, 0, Sum[KroneckerSymbol[d, 11]*(n/d)^4, {d, Divisors[n]}]]; Table[a[n], {n,1,50}] (* _G. C. Greubel_, Apr 17 2018 *)
%o A065103 (PARI) a(n) = sumdiv(n, d, kronecker(d, 11) * (n/d)^4); \\ _Amiram Eldar_, Jan 18 2025
%Y A065103 Cf. A011582.
%K A065103 nonn,mult
%O A065103 1,2
%A A065103 Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Nov 20 2001