This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065105 #13 Aug 11 2017 20:45:48 %S A065105 7,11,14,17,19,22,23,28,29,31,33,35,37,38,41,43,44,46,47,49,51,53,56, %T A065105 57,58,59,61,62,66,67,69,70,71,73,74,76,77,79,82,83,85,86,87,88,91,92, %U A065105 93,94,95,97,98,99,101,103,106,107,109,111,112,113,114,115,116,118,119,121 %N A065105 Numbers not expressible as a product of Fibonacci numbers. %C A065105 I conjecture that for this sequence, a(n + 1) - a(n) <= 5 for all n; and a(n + 1) - a(n) <= 3 for n >= 8. %e A065105 28 = 2*14 = 4*7 is a term in the sequence because 28, 14, and 7 are not Fibonacci numbers. 63 = 3*21 is not a term in the sequence because 3 and 21 are Fibonacci numbers. %p A065105 with(combinat): A000045:=proc(n) options remember: RETURN(fibonacci(n)): end: mulfib:=proc(m,i) local j,q,f: f:=0: for j from i by -1 to 3 while(f=0) do if(irem(m, A000045(j))=0) then q:=iquo(m, A000045(j)): if(q=1) then RETURN(1) else f:=mulfib(q,j) fi fi od: RETURN(f): end: for i from 3 to 11 do for n from A000045(i) to A000045(i+1)-1 do m:=mulfib(n,i): if m=0 then printf("%d, ",n) fi od od: # C. Ronaldo %t A065105 f[lst_] := Take[ Union[ Flatten[ Table[ lst[[i]]lst[[j]], {i, Length[lst]}, {j, i}]]], 70]; Complement[ Range[189], Nest[f, Fibonacci[Range[2, 20]], 3]] (* _Robert G. Wilson v_, Feb 12 2005 *) %Y A065105 Cf. A000045. Complement of A065108. %K A065105 nonn %O A065105 1,1 %A A065105 _Joseph L. Pe_, Nov 20 2001 %E A065105 More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 02 2005 %E A065105 Example corrected by _Eric S. Egge_, Dec 06 2013