cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065118 Numbers which are 19 times the sum of their digits.

This page as a plain text file.
%I A065118 #13 Feb 17 2018 14:00:32
%S A065118 114,133,152,171,190,209,228,247,266,285,399
%N A065118 Numbers which are 19 times the sum of their digits.
%C A065118 The digit sums of the first 10 numbers are consecutive: 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. [Howard Berman (howard_berman(AT)hotmail.com), Apr 25 2009]
%C A065118 From _Bruno Berselli_, Nov 29 2013: (Start)
%C A065118 Numbers which are k times the sum of their digits:
%C A065118 k =  1:  1, 2, 3, 4, 5, 6, 7, 8, 9;
%C A065118 k =  2:  18;
%C A065118 k =  3:  27;
%C A065118 k =  4:  12, 24, 36, 48;
%C A065118 k =  5:  45;
%C A065118 k =  6:  54;
%C A065118 k =  7:  21, 42, 63, 84;
%C A065118 k =  8:  72;
%C A065118 k =  9:  81;
%C A065118 k = 10:  10, 20, 30, 40, 50, 60, 70, 80, 90;
%C A065118 k = 11:  198;
%C A065118 k = 12:  108;
%C A065118 k = 13:  117, 156, 195;
%C A065118 k = 14:  126;
%C A065118 k = 15:  135;
%C A065118 k = 16:  144, 192, 288;
%C A065118 k = 17:  153;
%C A065118 k = 18:  162;
%C A065118 k = 19:  this sequence;
%C A065118 k = 20:  180;
%C A065118 k = 21:  378;
%C A065118 k = 22:  132, 264, 396;
%C A065118 k = 23:  207;
%C A065118 k = 24:  216;
%C A065118 k = 25:  150, 225, 375;
%C A065118 k = 26:  234, 468;
%C A065118 k = 27:  243, 486;
%C A065118 k = 28:  112, 140, 224, 252, 280, 308, 336, 364, 392, 448, 476, 588;
%C A065118 k = 29:  261;
%C A065118 k = 30:  270.
%C A065118 Also, k = 37 (prime) generates the list: 111, 222, 333, 370, 407, 444, 481, 518, 555, 592, 629, 666, 777, 888, 999. (End)
%e A065118 114 = 19*(1+1+4), 133 = 19*(1+3+3) etc.
%t A065118 Select[Range[400],#==19*Total[IntegerDigits[#]]&] (* _Harvey P. Dale_, Feb 17 2018 *)
%Y A065118 Cf. A037478.
%K A065118 base,fini,full,nonn
%O A065118 0,1
%A A065118 _Henry Bottomley_, Nov 20 2001