cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065129 a(n) is the least m such that m/A003285(m) = n, or 0 if no such m exists.

Original entry on oeis.org

0, 2, 6, 8, 5, 12, 28, 32, 18, 10, 0, 24, 0, 0, 30, 0, 17, 0, 38, 40, 42, 0, 276, 48, 125, 26, 0, 56, 406, 0, 496, 128, 66, 68, 140, 72, 37, 0, 0, 80, 0, 84, 0, 176, 90, 0, 1222, 192, 294, 50, 102, 104, 636, 432, 110, 0, 0, 928, 708, 120, 0, 248, 252, 0, 65, 132
Offset: 1

Views

Author

Naohiro Nomoto, Nov 14 2001

Keywords

Comments

Conjecture: A003285(m) = even or A004613, if m is divisible by A003285(m). [This sentence appears to be saying that all odd terms of this sequence are in A004613.]
Because A003285(m) < 3.76*sqrt(m)*log(m) (see Stanton et al.), it is enough to check m such that m <= (3.76*n*log(m))^2. For n <= 36 it even suffices to check m <= 5916*n. - Nathaniel Johnston, May 10 2011

Crossrefs

Programs

  • Maple
    with(numtheory): A065129 := proc(n) local m: if(n=1)then return 0:fi: for m from n by n to 5916*n do if(frac(sqrt(m))<>0)then if(n*nops(cfrac(sqrt(m),'periodic','quotients')[2])=m)then return m: fi: fi: od: return 0: end: seq(A065129(n),n=1..10); # Nathaniel Johnston, May 10 2011
  • Mathematica
    Do[k = 2; While[ k / Length[ Last[ ContinuedFraction[ Sqrt[k]]]] != n, k++ ]; Print[k], {n, 2, 10} ]

Extensions

a(11)-a(37) from Nathaniel Johnston, May 10 2011
Terms a(38) and beyond from Chai Wah Wu, Jan 27 2021