cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065135 Numbers m such that prime(m) = pi(m)*k + 1 for some k.

This page as a plain text file.
%I A065135 #17 Mar 13 2025 08:55:56
%S A065135 3,4,6,7,10,11,14,21,37,45,47,53,55,63,75,81,101,115,121,125,136,183,
%T A065135 209,230,271,313,319,327,348,377,399,425,460,575,581,738,786,792,850,
%U A065135 881,917,1076,1110,1152,1246,1519,1740,2062,2074,2119,2144,2327,2361
%N A065135 Numbers m such that prime(m) = pi(m)*k + 1 for some k.
%C A065135 Solutions to A000040(x) mod A000720(x) = 1.
%C A065135 Values satisfying A065133(x) = 1.
%H A065135 Amiram Eldar, <a href="/A065135/b065135.txt">Table of n, a(n) for n = 1..220</a>
%e A065135 m = 581 is a term because prime(581) = 4211 = 106*40 + 1 = 40*pi(581) + 1.
%t A065135 seq[lim_] := Module[{r = Range[2, lim], p}, p = PrimePi[r]; 1 + Position[Mod[Prime[r], p], 1] // Flatten]; seq[2400] (* _Amiram Eldar_, Mar 13 2025 *)
%o A065135 (PARI) isok(m) = if (m>1, prime(m) % primepi(m) == 1); \\ _Michel Marcus_, Mar 04 2022
%o A065135 (PARI) list(lim) = {my(k = 1); forprime(p = 3, lim, k++; if(p % primepi(k) == 1, print1(k, ", ")));} \\ _Amiram Eldar_, Mar 13 2025
%Y A065135 Cf. A000040, A000720, A065133.
%K A065135 nonn
%O A065135 1,1
%A A065135 _Labos Elemer_, Oct 15 2001