cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065148 Nonprimes m such that phi(m)*sigma(m) is divisible by m+1.

This page as a plain text file.
%I A065148 #33 Mar 11 2025 04:43:00
%S A065148 15,20,35,95,104,143,207,255,287,319,323,464,539,650,890,899,1023,
%T A065148 1034,1199,1295,1349,1407,1519,1763,1952,2015,2204,2834,2975,3599,
%U A065148 4031,4454,4607,5183,6479,9215,9503,9799,10403,11339,11663,12095,12824,13055
%N A065148 Nonprimes m such that phi(m)*sigma(m) is divisible by m+1.
%C A065148 Every prime p satisfies A000010(p)*A000203(p) == 0 (mod p+1).
%H A065148 Amiram Eldar, <a href="/A065148/b065148.txt">Table of n, a(n) for n = 1..5000</a> (terms 1..500 from Harry J. Smith)
%F A065148 A000010(m)*A000203(m) == 0 (mod m+1), m is composite.
%e A065148 m = 95 is a term since phi(95) = 72, sigma(95) = 120, product = 8640, product/(m+1) = 90.
%t A065148 Do[s=EulerPhi[n]*DivisorSigma[1, n]; If[IntegerQ[s/(n+1)]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
%t A065148 Select[Range[14000],!PrimeQ[#]&&Divisible[EulerPhi[#]DivisorSigma[1,#],#+1]&] (* _Harvey P. Dale_, Jul 08 2017 *)
%o A065148 (PARI) { n=0; for (m=1, 10^9, s=eulerphi(m)*sigma(m); if (s%(m+1) == 0 && !isprime(m), write("b065148.txt", n++, " ", m); if (n==500, return)) ) } \\ _Harry J. Smith_, Oct 12 2009
%Y A065148 Cf. A000010, A000203, A062354, A011257.
%K A065148 nonn
%O A065148 1,1
%A A065148 _Labos Elemer_, Oct 18 2001
%E A065148 Offset changed from 0 to 1 by _Harry J. Smith_, Oct 12 2009
%E A065148 Definition clarified by _Harvey P. Dale_, Jul 08 2017