This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065165 #28 Aug 08 2023 03:21:41 %S A065165 4,6,2,8,1,10,3,12,5,14,7,16,9,18,11,20,13,22,15,24,17,26,19,28,21,30, %T A065165 23,32,25,34,27,36,29,38,31,40,33,42,35,44,37,46,39,48,41,50,43,52,45, %U A065165 54,47,56,49,58,51,60,53,62,55,64,57,66,59,68,61,70,63,72,65,74,67,76 %N A065165 Permutation t->t+2 of Z, folded to N. %C A065165 Corresponds to simple periodic asynchronic site swap pattern ...222222... (holding a ball in each hand forever). %C A065165 This permutation consists of just two infinite cycles. %H A065165 Vincenzo Librandi, <a href="/A065165/b065165.txt">Table of n, a(n) for n = 1..1000</a> %H A065165 Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507-519. %H A065165 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %H A065165 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>. %F A065165 Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+2). %F A065165 G.f.: x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4) / ((x-1)^2*(x+1)). - _Colin Barker_, Feb 18 2013 %F A065165 a(n) = 4*(-1)^n+n for n>3. a(n) = a(n-1)+a(n-2)-a(n-3) for n>6. - _Colin Barker_, Mar 07 2014 %F A065165 Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 3/2. - _Amiram Eldar_, Aug 08 2023 %t A065165 CoefficientList[Series[(3 x^5 - 3 x^4 + 4 x^3 - 8 x^2 + 2 x + 4)/((x - 1)^2 (x + 1)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Mar 08 2014 *) %t A065165 LinearRecurrence[{1,1,-1},{4,6,2,8,1,10},80] (* _Harvey P. Dale_, May 09 2018 *) %o A065165 (PARI) Vec(x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4)/((x-1)^2*(x+1)) + O(x^100)) \\ _Colin Barker_, Mar 07 2014 %Y A065165 Row 2 of A065167. Inverse permutation: A065169. %K A065165 nonn,easy %O A065165 1,1 %A A065165 _Antti Karttunen_, Oct 19 2001