cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065171 Permutation of Z, folded to N, corresponding to the site swap pattern ...26120123456... which ascends infinitely after t=0.

This page as a plain text file.
%I A065171 #34 May 02 2017 22:17:15
%S A065171 1,4,2,8,3,12,6,16,5,20,10,24,7,28,14,32,9,36,18,40,11,44,22,48,13,52,
%T A065171 26,56,15,60,30,64,17,68,34,72,19,76,38,80,21,84,42,88,23,92,46,96,25,
%U A065171 100,50,104,27,108,54,112,29,116,58,120,31,124,62,128,33,132,66,136,35
%N A065171 Permutation of Z, folded to N, corresponding to the site swap pattern ...26120123456... which ascends infinitely after t=0.
%C A065171 This permutation consists of one fixed point (at 0, mapped here to 1) and an infinite number of infinite cycles.
%H A065171 Colin Barker, <a href="/A065171/b065171.txt">Table of n, a(n) for n = 1..1000</a>
%H A065171 Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
%H A065171 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%H A065171 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,2,0,0,0,-1).
%F A065171 a(2*k+2) = 4*k+4, a(4*k+1) = 2*k+1, a(4*k+3) = 4*k+2. - _Ralf Stephan_, Jun 10 2005
%F A065171 G.f.: x*(2*x^6+4*x^5+x^4+8*x^3+2*x^2+4*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - _Colin Barker_, Feb 18 2013
%F A065171 a(n) = 2*a(n-4)-a(n-8) for n>8. - _Colin Barker_, Oct 29 2016
%F A065171 a(n) = (11*n-1+(5*n+1)*(-1)^n+(n-3)*(1-(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))/8. - _Luce ETIENNE_, Oct 20 2016
%e A065171 G.f. = x + 4*x^2 + 2*x^3 + 8*x^4 + 3*x^5 + 12*x^6 + 6*x^7 + 16*x^8 + ...
%p A065171 [seq(Z2N(InfRisingSS(N2Z(n))), n=1..120)]; InfRisingSS := z -> `if`((z < 0),`if`((0 = (z mod 2)),z/2,-z),2*z);
%p A065171 N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
%o A065171 (PARI) Vec(x*(2*x^6+4*x^5+x^4+8*x^3+2*x^2+4*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100)) \\ _Colin Barker_, Oct 29 2016
%o A065171 (PARI) {a(n) = if( n%2, n\2+1, n*2)}; /* _Michael Somos_, Nov 06 2016 */
%Y A065171 Inverse permutation: A065172. A065173 gives the deltas p(t)-t, i.e., the associated site swap sequence. Cf. also A065167, A065174, A065260.
%K A065171 nonn,easy
%O A065171 1,2
%A A065171 _Antti Karttunen_, Oct 19 2001