cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065173 Site swap sequence that rises infinitely after t=0. The associated delta sequence p(t)-t for the permutation of Z: A065171.

This page as a plain text file.
%I A065173 #19 May 02 2017 22:17:15
%S A065173 0,1,2,2,1,3,6,4,2,5,10,6,3,7,14,8,4,9,18,10,5,11,22,12,6,13,26,14,7,
%T A065173 15,30,16,8,17,34,18,9,19,38,20,10,21,42,22,11,23,46,24,12,25,50,26,
%U A065173 13,27,54,28,14,29,58,30,15,31,62,32,16,33,66,34,17,35,70,36,18,37,74,38
%N A065173 Site swap sequence that rises infinitely after t=0. The associated delta sequence p(t)-t for the permutation of Z: A065171.
%C A065173 Here the site swap pattern ..., 5, 18, 4, 14, 3, 10, 2, 6, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... that spans over the Z (zero throw is at t=0) has been folded to N by picking values at t=0, t=1, t=-1, t=2, t=-2, t=3, t=-3, etc. successively.
%H A065173 Colin Barker, <a href="/A065173/b065173.txt">Table of n, a(n) for n = 1..1000</a>
%H A065173 Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
%H A065173 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,2,0,0,0,-1).
%F A065173 a(2*k+2) = k+1, a(4*k+1) = k, a(4*k+3) = 4*k+2. - _Ralf Stephan_, Jun 10 2005
%F A065173 G.f.: x^2*(2*x^5+x^4+x^3+2*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - _Colin Barker_, Feb 18 2013
%F A065173 a(n) = 2*a(n-4)-a(n-8) for n>8. - _Colin Barker_, Oct 29 2016
%F A065173 a(n) = (9*n-5-(n-5)*(-1)^n-3*(n-1)*(1-(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/16. - _Luce ETIENNE_, Oct 29 2016
%e A065173 G.f. = x^2 + 2*x^3 + 2*x^4 + x^5 + 3*x^6 + 6*x^7 + 4*x^8 + 2*x^9 + ...
%p A065173 [seq((InfRisingSS(N2Z(n))-N2Z(n)), n=1..120)]; N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
%o A065173 (PARI) concat(0, Vec(x^2*(2*x^5+x^4+x^3+2*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100))) \\ _Colin Barker_, Oct 29 2016
%o A065173 (PARI) {a(n) = if( n%2==0, n/2, n%4==1, n\4, n-1)}; /* _Michael Somos_, Nov 06 2016 */
%Y A065173 The other bisection gives A000027.
%K A065173 nonn,easy
%O A065173 1,3
%A A065173 _Antti Karttunen_, Oct 19 2001