This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065176 #30 May 22 2025 09:53:48 %S A065176 0,2,2,4,4,2,2,8,8,2,2,4,4,2,2,16,16,2,2,4,4,2,2,8,8,2,2,4,4,2,2,32, %T A065176 32,2,2,4,4,2,2,8,8,2,2,4,4,2,2,16,16,2,2,4,4,2,2,8,8,2,2,4,4,2,2,64, %U A065176 64,2,2,4,4,2,2,8,8,2,2,4,4,2,2,16,16,2,2,4,4,2,2,8,8,2,2,4,4,2,2,32,32,2,2 %N A065176 Site swap sequence associated with the permutation A065174 of Z. %C A065176 Here the site swap pattern ...,2,16,2,4,2,8,2,4,2,0,2,4,2,8,2,4,2,16,2,... that spans over the Z (zero throw is at t=0) has been folded to N by picking values at t=0, t=1, t=-1, t=2, t=-2, etc. successively. %C A065176 This pattern is shown in the figure 7 of Buhler and Graham paper and uses infinitely many balls, with each ball at step t thrown always to constant "height" 2^A001511[abs(t)] (no balls in hands at step t=0). %H A065176 Georg Fischer, <a href="/A065176/b065176.txt">Table of n, a(n) for n = 1..16384</a> %H A065176 Joe Buhler and R. L. Graham, <a href="https://web.archive.org/web/20201107022100/http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, Vol. 101, No. 6 (1994), 507-519. %F A065176 G.f.: (1-x+x^2)/(1-x) + (1+x)*Sum(k>=1, 2^(k-1)*x^2^k/(1-x^2^k)). - _Ralf Stephan_, Apr 17 2003 %F A065176 a(n) = A171977(floor(n/2)) for n >= 2. - _Georg Fischer_, Nov 28 2022 %p A065176 [seq(TZ2(abs(N2Z(n))), n=1..120)]; # using TZ2 from A065174 %p A065176 N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0); %p A065176 # Alternative: %p A065176 A065176 := n -> `if`(n = 1, 0, 2^padic:-ordp(n - 1 + irem(n-1, 2), 2)): %p A065176 seq(A065176(n), n = 1..99); # _Peter Luschny_, Nov 14 2021 %t A065176 a[n_] := 2^IntegerExponent[n - Mod[n, 2], 2]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, May 22 2025 *) %o A065176 (PARI) a(n) = if(n==1,0, 1<<valuation(bitnegimply(n,1),2)); \\ _Kevin Ryde_, Jul 09 2021 %o A065176 (Python) %o A065176 def A065176(n): %o A065176 s, h = 1, n // 2 %o A065176 if 0 == h: return 0 %o A065176 while 0 == h % 2: %o A065176 h //= 2 %o A065176 s += s %o A065176 return s + s %o A065176 print([A065176(n) for n in range(1, 100)]) # _Peter Luschny_, Nov 14 2021 %Y A065176 Bisection of this gives A171977 or 2*A006519 or 2^A001511. %Y A065176 Cf. A065174. %K A065176 easy,nonn %O A065176 1,2 %A A065176 _Antti Karttunen_, Oct 19 2001