cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065176 Site swap sequence associated with the permutation A065174 of Z.

This page as a plain text file.
%I A065176 #30 May 22 2025 09:53:48
%S A065176 0,2,2,4,4,2,2,8,8,2,2,4,4,2,2,16,16,2,2,4,4,2,2,8,8,2,2,4,4,2,2,32,
%T A065176 32,2,2,4,4,2,2,8,8,2,2,4,4,2,2,16,16,2,2,4,4,2,2,8,8,2,2,4,4,2,2,64,
%U A065176 64,2,2,4,4,2,2,8,8,2,2,4,4,2,2,16,16,2,2,4,4,2,2,8,8,2,2,4,4,2,2,32,32,2,2
%N A065176 Site swap sequence associated with the permutation A065174 of Z.
%C A065176 Here the site swap pattern ...,2,16,2,4,2,8,2,4,2,0,2,4,2,8,2,4,2,16,2,... that spans over the Z (zero throw is at t=0) has been folded to N by picking values at t=0, t=1, t=-1, t=2, t=-2, etc. successively.
%C A065176 This pattern is shown in the figure 7 of Buhler and Graham paper and uses infinitely many balls, with each ball at step t thrown always to constant "height" 2^A001511[abs(t)] (no balls in hands at step t=0).
%H A065176 Georg Fischer, <a href="/A065176/b065176.txt">Table of n, a(n) for n = 1..16384</a>
%H A065176 Joe Buhler and R. L. Graham, <a href="https://web.archive.org/web/20201107022100/http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, Vol. 101, No. 6 (1994), 507-519.
%F A065176 G.f.: (1-x+x^2)/(1-x) + (1+x)*Sum(k>=1, 2^(k-1)*x^2^k/(1-x^2^k)). - _Ralf Stephan_, Apr 17 2003
%F A065176 a(n) = A171977(floor(n/2)) for n >= 2. - _Georg Fischer_, Nov 28 2022
%p A065176 [seq(TZ2(abs(N2Z(n))), n=1..120)];  # using TZ2 from A065174
%p A065176 N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
%p A065176 # Alternative:
%p A065176 A065176 := n -> `if`(n = 1, 0, 2^padic:-ordp(n - 1 + irem(n-1, 2), 2)):
%p A065176 seq(A065176(n), n = 1..99);  # _Peter Luschny_, Nov 14 2021
%t A065176 a[n_] := 2^IntegerExponent[n - Mod[n, 2], 2]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, May 22 2025 *)
%o A065176 (PARI) a(n) = if(n==1,0, 1<<valuation(bitnegimply(n,1),2)); \\ _Kevin Ryde_, Jul 09 2021
%o A065176 (Python)
%o A065176 def A065176(n):
%o A065176     s, h = 1, n // 2
%o A065176     if 0 == h: return 0
%o A065176     while 0 == h % 2:
%o A065176         h //= 2
%o A065176         s += s
%o A065176     return s + s
%o A065176 print([A065176(n) for n in range(1, 100)])  # _Peter Luschny_, Nov 14 2021
%Y A065176 Bisection of this gives A171977 or 2*A006519 or 2^A001511.
%Y A065176 Cf. A065174.
%K A065176 easy,nonn
%O A065176 1,2
%A A065176 _Antti Karttunen_, Oct 19 2001