This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065248 #3 Oct 15 2013 22:31:08 %S A065248 0,4,3511808,16417340254783504656, %T A065248 1461340738496783113671688672284985566897802138624, %U A065248 3940200619620187981589093886506105584397793947159777 %N A065248 Networks with n components. %C A065248 Number of special {0,1}^n to {0,1}^n vector-vector maps of which all components are non-neurons, i.e. none is a linearly separable switching function. %D A065248 Labos E. (1996): Long Cycles and Special Categories of Formal Neuronal Networks. Acta Biologica Hungarica, 47: 261-272. %D A065248 Labos E. and Sette M.(1995): Long Cycle Generation by McCulloch-Pitts Networks(MCP-Nets) with Dense and Sparse Weight Matrices. Proc. of BPTM, McCulloch Memorial Conference [eds:Moreno-Diaz R. and Mira-Mira J., pp. 350-359.], MIT Press, Cambridge,MA,USA. %D A065248 McCulloch WS and Pitts W (1943): A Logical Calculus Immanent in Nervous Activity. Bull.Math.Biophys. 5:115-133. %F A065248 a(n)=A064436(n)^n %e A065248 For n=2 XOR and its negation are non-neurons, providing 4 networks, all of which permutations are distinguished from each other. For n=3, 152=A064436(3) switching functions are non-neurons, so 152^3=3511808 networks are constructible without formal neurons as component-functions. %Y A065248 Cf. A000609, A065246, A065247, A064436. %K A065248 nonn %O A065248 1,2 %A A065248 _Labos Elemer_, Oct 26 2001