This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065310 #25 Sep 15 2024 07:13:13 %S A065310 3,2,2,1,1,2,2,1,1,2,2,1,1,2,1,1,1,1,2,2,1,1,1,1,2,1,1,2,2,1,1,2,1,1, %T A065310 1,1,2,1,1,1,1,2,2,1,1,1,1,2,1,1,2,2,1,1,1,1,2,1,1,2,1,1,1,1,2,1,1,1, %U A065310 1,1,1,2,1,1,2,2,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,2 %N A065310 Number of occurrences of n-th prime in A065308, where A065308(j) = prime(j - pi(j)). %C A065310 Seems identical to A054546. Each odd prime arises once or twice!? %C A065310 First differences of A018252 (positive nonprime numbers). Including 0 gives A054546. Removing 1 gives A073783. - _Gus Wiseman_, Sep 15 2024 %H A065310 Harry J. Smith, <a href="/A065310/b065310.txt">Table of n, a(n) for n = 1..1000</a> %t A065310 t=Table[Prime[w-PrimePi[w]], {w, a, b}] Table[Count[t, Prime[n]], {n, c, d}] %t A065310 Differences[Select[Range[100],!PrimeQ[#]&]] (* _Gus Wiseman_, Sep 15 2024 *) %o A065310 (PARI) { p=1; f=2; m=1; for (n=1, 1000, a=0; p=nextprime(p + 1); while (p==f, a++; m++; f=prime(m - primepi(m))); write("b065310.txt", n, " ", a) ) } \\ _Harry J. Smith_, Oct 16 2009 %Y A065310 Cf. A000040, A000720, A054576, A065308-A065309. %Y A065310 For twin 2's see A169643. %Y A065310 Positions of 1's are A375926, complement A014689 (except first term). %Y A065310 Other families of numbers and their first-differences: %Y A065310 For prime numbers (A000040) we have A001223. %Y A065310 For composite numbers (A002808) we have A073783. %Y A065310 For nonprime numbers (A018252) we have A065310 (this). %Y A065310 For perfect powers (A001597) we have A053289. %Y A065310 For non-perfect-powers (A007916) we have A375706. %Y A065310 For squarefree numbers (A005117) we have A076259. %Y A065310 For nonsquarefree numbers (A013929) we have A078147. %Y A065310 For prime-powers inclusive (A000961) we have A057820. %Y A065310 For prime-powers exclusive (A246655) we have A057820(>1). %Y A065310 For non-prime-powers inclusive (A024619) we have A375735. %Y A065310 For non-prime-powers exclusive (A361102) we have A375708. %Y A065310 Cf. A046933, A053707, A054546, A110969, A176246, A251092, A373403, A375929. %K A065310 nonn %O A065310 1,1 %A A065310 _Labos Elemer_, Oct 29 2001