This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065341 #42 Jul 24 2021 06:55:33 %S A065341 2047,8388607,536870911,137438953471,2199023255551,8796093022207, %T A065341 140737488355327,9007199254740991,576460752303423487, %U A065341 147573952589676412927,2361183241434822606847,9444732965739290427391 %N A065341 Mersenne composites: 2^prime(m) - 1 is not a prime. %C A065341 For the number of prime factors in a(n) see A135975. For indices of primes n in composite 2^prime(n)-1 see A135980. For smallest prime divisors of Mersenne composites see A136030. For largest prime divisors of Mersenne composites see A136031. For largest divisors see A145097. - _Artur Jasinski_, Oct 01 2008 %C A065341 All the terms are Fermat pseudoprimes to base 2 (A001567). For a proof see, e.g., Jaroma and Reddy (2007). - _Amiram Eldar_, Jul 24 2021 %H A065341 Muniru A Asiru, <a href="/A065341/b065341.txt">Table of n, a(n) for n = 1..110</a> %H A065341 John H. Jaroma and Kamaliya N. Reddy, <a href="https://www.jstor.org/stable/27642303">Classical and alternative approaches to the Mersenne and Fermat numbers</a>, The American Mathematical Monthly, Vol. 114, No. 8 (2007), pp. 677-687. %F A065341 a(n) = 2^A054723(n) - 1. %e A065341 2^11 - 1 = 2047 = 23*89. %p A065341 A065341 := proc(n) local i; %p A065341 i := 2^(ithprime(n))-1: %p A065341 if (not isprime(i)) then %p A065341 RETURN (i) %p A065341 fi: end: seq(A065341(n), n=1..21); # _Jani Melik_, Feb 09 2011 %t A065341 Select[Table[2^Prime[n]-1,{n,30}],!PrimeQ[#]&] (* _Harvey P. Dale_, May 06 2018 *) %Y A065341 Cf. A054723, A000043, A000668, A001348, A001567. %Y A065341 Cf. A135975, A135980, A145097, A136031. - _Artur Jasinski_, Oct 01 2008 %K A065341 nonn %O A065341 1,1 %A A065341 _Labos Elemer_, Oct 30 2001