cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065406 Mersenne prime exponents (A000043) which are also Sophie Germain primes (A005384).

This page as a plain text file.
%I A065406 #33 Aug 23 2020 02:36:53
%S A065406 2,3,5,89,9689,21701,859433,43112609
%N A065406 Mersenne prime exponents (A000043) which are also Sophie Germain primes (A005384).
%C A065406 From _Gord Palameta_, Jul 19 2018: (Start)
%C A065406 All terms after the first two are congruent to 1 modulo 4, because if p is a Sophie Germain prime that is congruent to 3 modulo 4 then 2p + 1 divides 2^p - 1.
%C A065406 Boklan and Conway conjecture that this sequence is finite.
%C A065406 (End)
%H A065406 David W. Ash, Ian F. Blake, and Scott A. Vanstone, <a href="https://doi.org/10.1016/0166-218X(89)90001-2">Low Complexity Normal Bases</a>, Discrete Applied Mathematics, 25(1989), 206.
%H A065406 Kent D. Boklan, John H. Conway, <a href="https://arxiv.org/abs/1605.01371">Expect at most one billionth of a new Fermat Prime!</a>, arXiv:1605.01371 [math.NT], 2016, p. 6.
%e A065406 31 = 2^5 - 1 and 11 = 2 * 5 + 1 are primes.
%t A065406 Select[Prime[Range[1000]], PrimeQ[2# + 1] && PrimeQ[2^# - 1] &] (* _Alonso del Arte_, Jul 20 2018 *)
%t A065406 Select[Prime@ Range[10^6], And[PrimeQ[2 # + 1], MersennePrimeExponentQ@ #] &] (* _Michael De Vlieger_, Jul 20 2018 *)
%Y A065406 Cf. A000043, A005384.
%K A065406 nonn,more
%O A065406 1,1
%A A065406 _Labos Elemer_, Nov 06 2001
%E A065406 a(8) = 43112609, since the ordinal position of this term in A000043 is now confirmed. - _Gord Palameta_, Jul 19 2018