cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065421 Decimal expansion of Viggo Brun's constant B, also known as the twin primes constant B_2: Sum (1/p + 1/q) as (p,q) runs through the twin primes.

This page as a plain text file.
%I A065421 #102 Apr 21 2025 16:03:37
%S A065421 1,9,0,2,1,6,0,5,8
%N A065421 Decimal expansion of Viggo Brun's constant B, also known as the twin primes constant B_2: Sum (1/p + 1/q) as (p,q) runs through the twin primes.
%C A065421 The calculation of Brun's constant is "based on heuristic considerations about the distribution of twin primes" (Ribenboim, 1989).
%C A065421 Another constant related to the twin primes is the twin primes constant C_2 (sometimes also denoted PI_2) A005597 defined in connection with the Hardy-Littlewood conjecture concerning the distribution pi_2(x) of the twin primes.
%C A065421 Comment from _Hans Havermann_, Aug 06 2018: "I don't think the last three (or possibly even four) OEIS terms [he is referring to the sequence at that date - it has changed since then] are necessarily warranted. P. Sebah (see link below) (http://numbers.computation.free.fr/Constants/Primes/twin.html) gives 1.902160583104... as the value for primes to 10^16 followed by a suggestion that the (final) value 'should be around 1.902160583...'" - added by _N. J. A. Sloane_, Aug 06 2018
%D A065421 R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 14.
%D A065421 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 133-135.
%D A065421 Paulo Ribenboim, The Book of Prime Number Records, 2nd. ed., Springer-Verlag, New York, 1989, p. 201.
%D A065421 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 193.
%H A065421 V. Brun, La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 + ... où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie, Bull Sci. Math. 43 (1919), <a href="https://gallica.bnf.fr/ark:/12148/bpt6k96292009/f104.image">100-104</a> and <a href="https://gallica.bnf.fr/ark:/12148/bpt6k96292009/f128.image">124-128</a>.
%H A065421 C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=BrunsConstant">Brun's constant</a>
%H A065421 Sebastian M. Cioabă and Werner Linde, <a href="https://bookstore.ams.org/view?ProductCode=AMSTEXT/58">A Bridge to Advanced Mathematics: from Natural to Complex Numbers</a>, Amer. Math. Soc. (2023) Vol. 58, see page 334.
%H A065421 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/brun/brun.html">Brun's Constant</a> [Broken link]
%H A065421 Steven R. Finch, <a href="http://web.archive.org/web/20010603070928/http://www.mathsoft.com/asolve/constant/brun/brun.html">Brun's Constant</a> [From the Wayback machine]
%H A065421 Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/twins/twins.html">Enumeration to 10^14 of the twin primes and Brun's constant</a>, Virginia Journal of Science, 46:3 (Fall, 1995), 195-204.
%H A065421 Thomas R. Nicely, <a href="/A001359/a001359.pdf">Enumeration to 10^14 of the twin primes and Brun's constant</a> [Local copy, pdf only]
%H A065421 Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/counts.html">Prime Constellations Research Project</a>
%H A065421 P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Primes/twin.html">Numbers, constants and computation</a>
%H A065421 D. Shanks and J. W. Wrench, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352022-X">Brun's constant</a>, Math. Comp. 28 (1974) 293-299; 28 (1974) 1183; Math. Rev. 50 #4510.
%H A065421 H. Tronnolone, <a href="https://web.archive.org/web/20190317232307/http://www.maths.adelaide.edu.au/hayden.tronnolone/publications/pdfs/A_tale_of_two_primes.pdf">A tale of two primes</a>, COLAUMS Space, #3, 2013.
%H A065421 Wikipedia, <a href="http://en.wikipedia.org/wiki/Brun%27s_constant">Brun's constant</a>
%F A065421 Equals Sum_{n>=1} 1/A077800(n).
%F A065421 From _Dimitris Valianatos_, Dec 21 2013: (Start)
%F A065421 (1/5) + Sum_{n>=1, excluding twin primes 3,5,7,11,13,...} mu(n)/n =
%F A065421 (1/5) + 1 - 1/2 + 1/6 + 1/10 + 1/14 + 1/15 + 1/21 + 1/22 - 1/23 + 1/26 - 1/30 + 1/33 + 1/34 + 1/35 - 1/37 + 1/38 + 1/39 - 1/42 ... = 1.902160583... (End)
%e A065421 (1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) + ... = 1.902160583209 +- 0.000000000781 [Nicely]
%Y A065421 Cf. A005597 (twin prime constant Product_{ p prime >= 3 } (1-1/(p-1)^2)).
%Y A065421 Cf. A077800 (twin primes).
%K A065421 hard,more,nonn,cons,nice
%O A065421 1,2
%A A065421 _Robert G. Wilson v_, Sep 08 2000
%E A065421 Corrected by _N. J. A. Sloane_, Nov 16 2001
%E A065421 More terms computed by Pascal Sebah (pascal_sebah(AT)ds-fr.com), Jul 15 2001
%E A065421 Further terms computed by Pascal Sebah (psebah(AT)yahoo.fr), Aug 22 2002
%E A065421 Commented and edited by _Daniel Forgues_, Jul 28 2009
%E A065421 Commented and reference added by _Jonathan Sondow_, Nov 26 2010
%E A065421 Unsound terms after a(9) removed by _Gord Palameta_, Sep 06 2018