This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065453 #26 Nov 23 2018 09:17:45 %S A065453 3,0,4,2,4,8,7,6,1,2,5,8,5,9,5,1,3,2,1,0,3,1,1,8,9,7,5,3,0,5,8,4,0,9, %T A065453 1,3,2,0,1,8,1,5,6,0,0,2,3,7,1,5,4,4,0,1,8,0,9,6,2,1,4,6,0,3,6,9,9,3, %U A065453 3,2,9,3,8,9,3,3,3,2,7,7,9,2,0,2,9,0,5,8,4,2,9,3,9,0,2,0,8,9,1 %N A065453 Decimal expansion of imaginary part of 4th nontrivial zero of Riemann zeta function. %C A065453 See A002410 and A058303 for more information. %H A065453 G. C. Greubel, <a href="/A065453/b065453.txt">Table of n, a(n) for n = 2..10000</a> %H A065453 Andrew M. Odlyzko, <a href="http://www.plouffe.fr/simon/constants/zeta100.html">The first 100 (non trivial) zeros of the Riemann Zeta function, to over 1000 decimal digits each</a>, AT&T Labs - Research. %H A065453 Andrew M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html">Tables of zeros of the Riemann zeta function</a> %H A065453 <a href="/index/Z#zeta_function">Index entries for zeta function</a>. %e A065453 The zero is at 1/2 + i * 30.42487612585951321031189753058409132... %t A065453 RealDigits[ Im[ ZetaZero[4]], 10, 99] // First (* _Jean-François Alcover_, Mar 07 2013 *) %o A065453 (PARI) solve(x=30,31,real(zeta(1/2+x*I))) \\ _Charles R Greathouse IV_, Mar 10 2016 %o A065453 (PARI) lfunzeros(lzeta,[30,31])[1] \\ _Charles R Greathouse IV_, Mar 10 2016 %Y A065453 Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4: this), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10). %Y A065453 Cf. A002410 (round), A013629 (floor), A092783 (ceiling). %K A065453 nonn,cons %O A065453 2,1 %A A065453 _N. J. A. Sloane_, Nov 24 2001