cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065464 Decimal expansion of Product_{p prime} (1 - (2*p-1)/p^3).

Original entry on oeis.org

4, 2, 8, 2, 4, 9, 5, 0, 5, 6, 7, 7, 0, 9, 4, 4, 4, 0, 2, 1, 8, 7, 6, 5, 7, 0, 7, 5, 8, 1, 8, 2, 3, 5, 4, 6, 1, 2, 1, 2, 9, 8, 5, 1, 3, 3, 5, 5, 9, 3, 6, 1, 4, 4, 0, 3, 1, 9, 0, 1, 3, 7, 9, 5, 3, 2, 1, 2, 3, 0, 5, 2, 1, 6, 1, 0, 8, 3, 0, 4, 4, 1, 0, 5, 3, 4, 8, 5, 1, 4, 5, 2, 4, 6, 8, 0, 6, 8, 5, 5, 4, 8, 0, 7, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Sum_{n <= x} A189021(n) ~ kx, where k is this constant. - Charles R Greathouse IV, Jan 24 2018
The probability that a number chosen at random is squarefree and coprime to another randomly chosen random (see Schroeder, 2009). - Amiram Eldar, May 23 2020, corrected Aug 04 2020

Examples

			0.428249505677094440218765707581823546...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.5.1, p. 110.
  • Manfred Schroeder, Number Theory in Science and Communication, 5th edition, Springer, 2009, page 59.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 98; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms+10]]; r[n_Integer] := LR[[n]]; (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n-1]/(n-1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 - (2*p-1)/p^3) \\ Amiram Eldar, Mar 12 2021

Formula

Equals A065463 divided by A013661. - R. J. Mathar, Mar 22 2011
Equals A065473 divided by A065480. - R. J. Mathar, May 02 2019
Equals (6/Pi^2)^2 * Product_{p prime} (1 + 1/(p^3 + p^2 - p - 1)) = 1.1587609... * (6/Pi^2)^2. - Amiram Eldar, May 23 2020
Equals lim_{m->oo} (1/m) * Sum_{k==1..m} (phi(k)/k)^2, where phi is the Euler totient function (A000010). - Amiram Eldar, Mar 12 2021

Extensions

More digits from Vaclav Kotesovec, Dec 18 2019