This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065468 #17 Mar 13 2021 10:05:50 %S A065468 9,8,8,5,0,4,3,9,7,7,4,1,2,4,6,9,0,8,7,5,1,1,0,6,6,2,3,8,5,1,1,8,6,6, %T A065468 6,4,4,0,0,9,5,8,0,8,3,2,7,5,3,4,6,1,8,8,1,2,0,5,1,3,9,2,6,2,4,4,0,5, %U A065468 7,8,4,7,5,7,3,0,8,5,7,9,3,5,1,8,8,8,0,0,7,5,3,6,7,7,2,5,7,3 %N A065468 Decimal expansion of Product_{p prime} (1 - 1/(p^5*(p+1))). %H A065468 R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into...</a>, arXiv:0903.2514 [math.NT], 2009-2011, Table 5, constant Q_1^(5). %H A065468 G. Niklasch, <a href="/A001692/a001692.html">Some number theoretical constants: 1000-digit values</a>. [Cached copy] %e A065468 0.9885043977412469087511066238511866644... %t A065468 $MaxExtraPrecision = 500; digits = 98; terms = 500; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0, 0, 0, 0}, LinearRecurrence[{-2, -1, 0, 0, 0, 1, 1}, {-6, 7, -8, 9, -10, 11, -18}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[ NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Apr 18 2016 *) %o A065468 (PARI) prodeulerrat(1 - 1/(p^5*(p+1))) \\ _Amiram Eldar_, Mar 13 2021 %Y A065468 Cf. A078083. %K A065468 cons,nonn %O A065468 0,1 %A A065468 _N. J. A. Sloane_, Nov 19 2001