cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065469 Decimal expansion of Product_{p prime} (1 - 1/(p^2-1)).

Original entry on oeis.org

5, 3, 0, 7, 1, 1, 8, 2, 0, 4, 7, 2, 0, 4, 4, 7, 9, 4, 9, 7, 2, 9, 4, 3, 7, 7, 2, 4, 7, 2, 9, 7, 7, 1, 7, 0, 9, 4, 7, 8, 6, 1, 0, 2, 2, 2, 0, 9, 8, 6, 0, 4, 0, 3, 4, 7, 5, 8, 1, 9, 0, 4, 9, 2, 8, 0, 9, 0, 5, 0, 6, 7, 9, 2, 6, 0, 9, 5, 7, 9, 0, 6, 3, 8, 6, 3, 8, 1, 9, 2, 4, 5, 6, 3, 6, 2, 3, 5
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.53071182047204479497294377247...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 98; terms = 800; P[n_] := PrimeZetaP[n]; LR = LinearRecurrence[{0, 3, 0, -2}, {0, 0, -2, 0}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2-1)) \\ Amiram Eldar, Mar 13 2021

Formula

Product of A013661 by A065474. - R. J. Mathar, Mar 26 2011
From Amiram Eldar, Jan 14 2022: (Start)
Equals Sum_{k>=1} mu(k)/(phi(k)*sigma(k)), where mu is the Möbius function (A008683), phi is the Euler totient function (A000010) and sigma(k) is the sum of divisors of k (A000203).
Equals Sum_{k>=1} mu(k)/J_2(k), where J_2 is Jordan's totient function (A007434). (End)