This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065473 #69 Feb 16 2025 08:32:45 %S A065473 2,8,6,7,4,7,4,2,8,4,3,4,4,7,8,7,3,4,1,0,7,8,9,2,7,1,2,7,8,9,8,3,8,4, %T A065473 4,6,4,3,4,3,3,1,8,4,4,0,9,7,0,5,6,9,9,5,6,4,1,4,7,7,8,5,9,3,3,6,6,5, %U A065473 2,2,4,3,1,3,1,9,4,3,2,5,8,2,4,8,9,1,2,6,8,2,5,5,3,7,4,2,3,7,4,6,8,5,3,6,4,7 %N A065473 Decimal expansion of the strongly carefree constant: Product_{p prime} (1 - (3*p-2)/(p^3)). %C A065473 Also decimal expansion of the probability that an integer triple (x, y, z) is pairwise coprime. - _Charles R Greathouse IV_, Nov 14 2011 %C A065473 The probability that 2 numbers chosen at random are coprime, and both squarefree (Delange, 1969). - _Amiram Eldar_, Aug 04 2020 %D A065473 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41. %D A065473 Gerald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edition, American Mathematical Society, 2015, page 59, exercise 55 and 56. %H A065473 Juan Arias de Reyna, R. Heyman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Heyman/heyman6.html">Counting Tuples Restricted by Pairwise Coprimality Conditions</a>, J. Int. Seq. 18 (2015) 15.10.4 %H A065473 Tim Browning, <a href="https://jtnb.centre-mersenne.org/article/JTNB_2011__23_3_579_0.pdf">The divisor problem for binary cubic forms</a>, Journal de théorie des nombres de Bordeaux, Vol. 23, No. 3 (2011), pp. 579-602; <a href="http://arxiv.org/abs/1006.3476">arXiv preprint</a>, arXiv:1006.3476 [math.NT], 2010. %H A065473 Hubert Delange, <a href="https://doi.org/10.1016/0022-314X(69)90045-6">On some sets of pairs of positive integers</a>, Journal of Number Theory, Vol. 1, No. 3 (1969), pp. 261-279. See p. 277. %H A065473 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 181. %H A065473 G. Niklasch, <a href="http://guests.mpim-bonn.mpg.de/moree/Moree.en.html">Some number theoretical constants: 1000-digit values</a>. %H A065473 G. Niklasch, <a href="/A001692/a001692.html">Some number theoretical constants: 1000-digit values</a>. [cached copy] %H A065473 László Tóth, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/40-1/toth.pdf">The probability that k positive integers are pairwise relatively prime</a>, Fibonacci Quart., Vol. 40 (2002), pp. 13-18. %H A065473 László Tóth, <a href="https://arxiv.org/abs/2006.12438">Another generalization of Euler's arithmetic function and of Menon's identity</a>, arXiv:2006.12438 [math.NT], 2020. See p. 3. %H A065473 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CarefreeCouple.html">Carefree Couple</a>. %F A065473 Equals Prod_{p prime} (1 - 1/p)^2*(1 + 2/p). - _Michel Marcus_, Apr 16 2016 %F A065473 The constant c in Sum_{k<=x} mu(k)^2 * 2^omega(k) = c * x * log(x) + O(x), where mu is A008683 and omega is A001221, and in Sum_{k<=x} 3^omega(k) = (1/2) * c * x * log(x)^2 + O(x*log(x)) (see Tenenbaum, 2015). - _Amiram Eldar_, May 24 2020 %F A065473 Equals A065472 * A227929 = A065472 / A098198. - _Amiram Eldar_, Aug 04 2020 %e A065473 0.2867474284344787341078927127898384... %t A065473 digits = 100; NSum[-(2+(-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Apr 11 2016 *) %o A065473 (PARI) prodeulerrat(1 - (3*p-2)/(p^3)) \\ _Amiram Eldar_, Mar 17 2021 %Y A065473 Cf. A065472, A069201, A069212, A074816, A074823, A078073, A098198, A227929, A299822. %K A065473 cons,nonn %O A065473 0,1 %A A065473 _N. J. A. Sloane_, Nov 19 2001 %E A065473 Name corrected by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 03 2003 %E A065473 More digits from _Vaclav Kotesovec_, Dec 19 2019