cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065485 Decimal expansion of Murata's constant Product_{p prime} (1 + 1/(p-1)^2).

Original entry on oeis.org

2, 8, 2, 6, 4, 1, 9, 9, 9, 7, 0, 6, 7, 5, 9, 1, 5, 7, 5, 5, 4, 6, 3, 9, 1, 7, 4, 7, 2, 3, 6, 9, 5, 3, 7, 4, 9, 0, 1, 3, 0, 4, 1, 1, 0, 5, 4, 5, 9, 2, 6, 6, 8, 7, 6, 1, 7, 9, 7, 4, 5, 8, 3, 4, 5, 3, 0, 7, 5, 7, 6, 2, 4, 4, 5, 9, 7, 6, 2, 4, 0, 5, 5, 3, 3, 4, 5, 8, 6, 6, 4, 9, 8, 8, 1, 8, 4, 4, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001; edited Sep 16 2007 at the suggestion of R. J. Mathar

Keywords

Examples

			2.8264199970675915755463917472369537490...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.4 and 2.7, pp. 106, 117.

Crossrefs

Programs

  • Mathematica
    digits = 99; terms = 1000; $MaxExtraPrecision = 500; r[n_Integer] := 2 - (1-I)^(n+1) - (1+I)^(n+1); NSum[r[n-1]*PrimeZetaP[n]/n, {n, 2, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10] // Exp // RealDigits[ #, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p-1)^2) \\ Vaclav Kotesovec, Sep 19 2020

Formula

Equals lim_{k->oo} (1/pi(k)) * Sum_{p prime, p <= k} (p-1)/phi(p-1), where pi(k) = A000720(k) and phi(k) = A000010(k) (Murata, 1991). - Amiram Eldar, Jul 31 2020
Equals Sum_{k>=1} mu(k)^2/phi(k)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010). - Amiram Eldar, Jan 14 2022