cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065492 Exponents in expansion of constant A065480 as a product zeta(n)^(-a(n)).

This page as a plain text file.
%I A065492 #11 Jun 13 2020 03:20:27
%S A065492 0,1,-1,2,-4,8,-14,25,-48,92,-168,310,-590,1117,-2092,3945,-7500,
%T A065492 14264,-27102,51627,-98694,188934,-361936,694565,-1335466,2570965,
%U A065492 -4954744,9561045,-18473140,35730392,-69176558,134063535,-260062168,504918960
%N A065492 Exponents in expansion of constant A065480 as a product zeta(n)^(-a(n)).
%C A065492 Inverse Euler transform of A077925 shifted by two places: 1, 0, 1, -1, 3, -5,... [From _R. J. Mathar_, Jul 26 2010]
%H A065492 Vaclav Kotesovec, <a href="/A065492/b065492.txt">Table of n, a(n) for n = 0..3000</a>
%H A065492 G. Niklasch, <a href="/A001692/a001692.html">Some number theoretical constants: 1000-digit values</a> [Cached copy]
%F A065492 a(n) ~ -(-1)^n * 2^(n+1) / n. - _Vaclav Kotesovec_, Jun 13 2020
%t A065492 nmax = 40; s = {}; For[j = 1, j <= nmax, j++, AppendTo[s, j*(1 - (-2)^(j - 1))/3 - Sum[s[[d]]*(1 - (-2)^(j - d - 1))/3, {d, j - 1}]]]; Table[Sum[If[Divisible[j, d], MoebiusMu[j/d], 0]*s[[d]], {d, 1, j}]/j, {j, nmax}] (* _Vaclav Kotesovec_, Jun 13 2020 *)
%Y A065492 Cf. A065480.
%K A065492 sign
%O A065492 0,4
%A A065492 _N. J. A. Sloane_, Nov 19 2001
%E A065492 More terms from _R. J. Mathar_, Jul 26 2010