A065493 Decimal expansion of the Feller-Tornier constant (1 + A065474)/2.
6, 6, 1, 3, 1, 7, 0, 4, 9, 4, 6, 9, 6, 2, 2, 3, 3, 5, 2, 8, 9, 7, 6, 5, 8, 4, 6, 2, 7, 4, 1, 1, 8, 5, 3, 3, 2, 8, 5, 4, 7, 5, 2, 8, 9, 8, 3, 2, 9, 1, 6, 3, 5, 4, 9, 8, 0, 9, 0, 5, 6, 2, 6, 2, 2, 6, 6, 2, 5, 0, 3, 1, 7, 4, 3, 1, 2, 2, 3, 0, 4, 9, 4, 2, 2, 6, 1, 7, 4, 0, 7, 8, 4, 2, 8, 1, 8, 7
Offset: 0
Examples
0.661317049469622335289765846274...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4.1, p. 106.
Links
- Jayadev S. Athreya, Cristian Cobeli, and Alexandru Zaharescu, Visibility phenomena in hypercubes, arXiv:2204.03147 [math.NT], 2022.
- Willy Feller and Erhard Tornier, Mengentheoretische Untersuchung von Eigenschaften der Zahlenreihe, Mathematische Annalen, Vol. 107 (1933), pp. 188-232.
- Mizan R. Khan and Riaz R. Khan, To count clean triangles we count on imph(n), arXiv:2012.11081 [math.CO], 2020. Mentions this constant.
- G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy]
- Eric Weisstein's World of Mathematics, Feller-Tornier Constant.
- Eric Weisstein's World of Mathematics, Prime Products.
- Wikipedia, Feller-Tornier constant.
Programs
-
Mathematica
digits = 98; r[n_] := -2^n; 1/2 + (1/2) Exp[NSum[r[n]*(PrimeZetaP[2*n]/n), {n, 1, Infinity}, NSumTerms -> 1000, WorkingPrecision -> 2 digits ]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
-
PARI
(1 + prodeulerrat(1 - 2/p^2))/2 \\ Amiram Eldar, Mar 17 2021
Comments