This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065535 #20 Feb 23 2021 05:25:04 %S A065535 1,1,0,1,0,1,1,1,0,1,0 %N A065535 Number of strongly perfect lattices in dimension n. %C A065535 It is known that a(12) through a(24) are at least 1, 0, 1, 0, 3, 0, 1, 0, 1, 1, 5, 4, 2 respectively. %C A065535 In this sequence, the dual pairs of lattices are counted as one if they are both strongly perfect (it is not always so). E.g., in dimensions 6, 7, 10 there are two strongly perfect lattices, forming a dual pair, but in dimension 21 there is a strongly perfect lattice which has a not strongly perfect dual. - _Andrey Zabolotskiy_, Feb 20 2021 %D A065535 J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson, Paris, 1996. %D A065535 J. Martinet, Perfect Lattices in Euclidean Spaces, Springer-Verlag, NY, 2003. See Section 16.2. %H A065535 B. Venkov, <a href="https://jamartin.perso.math.cnrs.fr/Publications/venkovensmath.pdf">Réseaux et designs sphériques</a>, pp. 10-86 in Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, ed. J. Martinet, L'Enseignement Mathématique, Geneva, 2001. %H A065535 Jacques Martinet, <a href="https://jamartin.perso.math.cnrs.fr/Lattices/strongperf.gp">Known strongly perfect lattices</a>, 2002-2020. %Y A065535 Cf. A037075, A065536, A004026. %K A065535 nonn,nice,hard,more %O A065535 1,1 %A A065535 _N. J. A. Sloane_, Nov 16 2001