A065551 Triangle of Faulhaber numbers (numerators) read by rows.
1, 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, -3, 3, -1, 1, 0, 5, -5, 17, -2, 1, 0, -691, 691, -118, 41, -5, 1, 0, 35, -35, 359, -44, 14, -1, 1, 0, -3617, 3617, -1237, 1519, -293, 22, -7, 1, 0, 43867, -43867, 750167, -13166, 2829, -2258, 217, -4, 1, 0, -1222277, 1222277, -627073, 1540967, -198793, 689, -235, 46, -3, 1
Offset: 0
Examples
Triangle begins: {1}, {0, 1}, {0, -1, 1}, {0, 1, -1, 1}, {0, -3, 3, -1, 1}, {0, 5, -5, 17, -2, 1}.
Links
- Ira M. Gessel and X. G. Viennot, Determinants, paths and plane partitions, 1989, p. 27, eqn 12.2
Formula
sum(n>=0, k>=0, f(n, k)*t^k*x^(2*n+1)/(2*n+1)! ) is the expansion of (cosh(sqrt(1+4*t)*x/2)-cosh(x/2))/t/sinh(x/2).
a(n,k)=numerator(f(n,k)).
Comments