cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065551 Triangle of Faulhaber numbers (numerators) read by rows.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, -3, 3, -1, 1, 0, 5, -5, 17, -2, 1, 0, -691, 691, -118, 41, -5, 1, 0, 35, -35, 359, -44, 14, -1, 1, 0, -3617, 3617, -1237, 1519, -293, 22, -7, 1, 0, 43867, -43867, 750167, -13166, 2829, -2258, 217, -4, 1, 0, -1222277, 1222277, -627073, 1540967, -198793, 689, -235, 46, -3, 1
Offset: 0

Views

Author

Wouter Meeussen, Dec 02 2001

Keywords

Comments

From Wolfdieter Lang, Jun 25 2011: (Start)
In the Gessel and Viennot reference f(n,k) = a(n,k)/A065553(n,k), n>=0, k>=0.
(n+1)*f(n,k) = A(n+1,n-k), with Knuth's A(m,k) =
A093556(m,k)/A093557(m,k). See the Knuth reference given in A093556, and the W. Lang link. (End)

Examples

			Triangle begins:
{1},
{0, 1},
{0, -1, 1},
{0, 1, -1, 1},
{0, -3, 3, -1, 1},
{0, 5, -5, 17, -2, 1}.
		

Crossrefs

Cf. A065553.
Cf. A103438.

Formula

sum(n>=0, k>=0, f(n, k)*t^k*x^(2*n+1)/(2*n+1)! ) is the expansion of (cosh(sqrt(1+4*t)*x/2)-cosh(x/2))/t/sinh(x/2).
a(n,k)=numerator(f(n,k)).