cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065554 Numbers k such that floor((3/2)^(k+1))/floor((3/2)^k) = 3/2.

This page as a plain text file.
%I A065554 #26 Dec 09 2024 22:03:59
%S A065554 2,9,11,13,24,29,31,36,37,40,41,43,49,50,51,67,68,70,72,73,77,79,80,
%T A065554 86,88,91,92,95,101,102,103,115,121,126,127,132,134,136,142,145,146,
%U A065554 151,154,156,162,165,167,171,172,176,178,179,181,191,193,194,195,198,199
%N A065554 Numbers k such that floor((3/2)^(k+1))/floor((3/2)^k) = 3/2.
%C A065554 Also k such that A002380(k+1) = 3*A002380(k). - _Benoit Cloitre_, Apr 21 2003
%C A065554 It appears that lim_{n->oo} a(n)/n = 3. - _Benoit Cloitre_, Jan 29 2006
%H A065554 Harry J. Smith, <a href="/A065554/b065554.txt">Table of n, a(n) for n = 1..1000</a>
%t A065554 a[1] = 2; a[n_ ] := a[n] = Block[ {k = a[n - 1] + 1}, While[ Floor[(3/2)^(k + 1)] / Floor[(3/2)^k] != 3/2, k++ ]; Return[k]]; Table[ a[n], {n, 1, 70} ]
%o A065554 (PARI) isok(k) = { my(f=3/2); floor(f^(k+1))/floor(f^k) == f } \\ _Harry J. Smith_, Oct 22 2009
%Y A065554 Cf. A002379, A002380.
%K A065554 nonn
%O A065554 1,1
%A A065554 _Benoit Cloitre_, Nov 28 2001
%E A065554 More terms from _Robert G. Wilson v_, Nov 30 2001