A065562 a(n) = b(n)-th highest positive integer not equal to any a(k), 1 <= k < n, where {b(n)} = 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ... (sequence A002260).
1, 2, 4, 3, 6, 8, 5, 9, 11, 13, 7, 12, 15, 17, 19, 10, 16, 20, 22, 24, 26, 14, 21, 25, 28, 30, 32, 34, 18, 27, 31, 35, 37, 39, 41, 43, 23, 33, 38, 42, 45, 47, 49, 51, 53, 29, 40, 46, 50, 54, 56, 58, 60, 62, 64, 36, 48, 55, 59, 63, 66, 68, 70, 72, 74, 76, 44, 57, 65, 69, 73, 77
Offset: 1
Examples
b(6) = 3, so a(6) = 8 = 3rd-highest positive integer not equal to 1, 2, 4, 3, or 6 (the values of a(k), 1 <= k < 6).
Links
Programs
-
Mathematica
Block[{a = {1}, s = Rest@ Range[96], r}, r = Flatten@ Map[Range, {1}~Join~Differences@ Most@ Reap[Do[If[Sow[PolygonalNumber@ i] > Last@ s, Break[]], {i, Infinity}]][[-1, 1]] ]; Do[AppendTo[a, s[[r[[i]] ]]]; s = Complement[s, a], {i, 2, 3 Max[s]/4}]; a] (* Michael De Vlieger, Sep 23 2017 *)
Comments