This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065567 #33 Sep 05 2023 20:46:27 %S A065567 1,3,1,6,3,1,10,7,4,1,15,11,10,5,1,21,20,21,15,6,1,28,26,36,35,21,7,1, %T A065567 36,38,60,71,56,28,8,1,45,50,90,127,126,84,36,9,1,55,67,132,215,253, %U A065567 210,120,45,10,1,66,77,177,335,463,462,330,165,55,11,1,78,105,250,512,798,925,792,495,220,66,12,1 %N A065567 T(n,m) is the sum over all m-subsets of {1,...,n} of the gcd of the subset. %C A065567 First differences of row sums equals A034738. %H A065567 Alois P. Heinz, <a href="/A065567/b065567.txt">Rows n = 1..200</a> (first 31 rows from Sean A. Irvine) %F A065567 Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A002088(n). - _Alois P. Heinz_, Sep 05 2023 %e A065567 Triangle begins: %e A065567 1; %e A065567 3, 1; %e A065567 6, 3, 1; %e A065567 10, 7, 4, 1; %e A065567 15, 11, 10, 5, 1; %e A065567 ... %e A065567 T(4,2) = 7 = gcd(1,2) + gcd(1,3) + gcd(1,4) + gcd(2,3) + gcd(2,4) + gcd(3,4). %p A065567 with(combstruct): %p A065567 a065567_row := proc(n) local k,L,l,R,comb; %p A065567 R := NULL; %p A065567 for k from 1 to n do %p A065567 L := 0; %p A065567 comb := iterstructs(Combination(n),size=k): %p A065567 while not finished(comb) do %p A065567 l := nextstruct(comb); %p A065567 L := L + igcd(op(l)); %p A065567 od; %p A065567 R := R,L; %p A065567 od; %p A065567 R end: # _Peter Luschny_, Dec 07 2010 %p A065567 # second Maple program: %p A065567 b:= proc(n, g, t) option remember; `if`(n=0, g*x^t, %p A065567 b(n-1, igcd(g, n), t+1)+b(n-1, g, t)) %p A065567 end: %p A065567 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0$2)): %p A065567 seq(T(n), n=1..12); # _Alois P. Heinz_, Sep 05 2023 %t A065567 Table[Plus@@(GCD@@@KSubsets[Range[n], m]), {n, 16}, {m, n}] %Y A065567 Row sums give A065568. %Y A065567 T(2n,n) gives A244174 for n>=1. %Y A065567 T(2n,n+1) gives A001791 for n>=1. %Y A065567 T(2n+1,n+1) gives A001700 for n>=0. %Y A065567 Cf. A002088, A034738. %K A065567 nonn,tabl %O A065567 1,2 %A A065567 _Wouter Meeussen_, Nov 30 2001