cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065583 Sum of numbers which in base n have (n-1) distinct nonzero digits.

This page as a plain text file.
%I A065583 #15 Aug 16 2022 10:41:16
%S A065583 0,1,12,252,9360,559800,49412160,6039794880,976299609600,
%T A065583 201599999798400,51766949513664000,16177372653293913600,
%U A065583 6044902527410562816000,2661334524326601925401600,1363387181797265578297344000,804077813274862776803112960000,540880443323184957954046525440000
%N A065583 Sum of numbers which in base n have (n-1) distinct nonzero digits.
%H A065583 G. C. Greubel, <a href="/A065583/b065583.txt">Table of n, a(n) for n = 1..230</a>
%F A065583 a(n) = n!*(n^(n-1)-1)/(2*(n-1)) = A001710(n)*A060072(n).
%e A065583 a(4) = 252 since we need to sum the base 4 numbers 123, 132, 213, 231, 312 and 321, i.e. the decimal sum 27+30+39+45+54+57 = 252.
%t A065583 Table[If[n==1, 0, n!*(n^(n-1) -1)/(2*(n-1))], {n,30}] (* _G. C. Greubel_, Aug 16 2022 *)
%o A065583 (Magma) [n eq 1 select 0 else Factorial(n)*(n^(n-1)-1)/(2*(n-1)): n in [1..30]]; // _G. C. Greubel_, Aug 16 2022
%o A065583 (SageMath) [0]+[factorial(n)*(n^(n-1)-1)/(2*(n-1)) for n in (2..30)] # _G. C. Greubel_, Aug 16 2022
%Y A065583 Cf. A001710, A060072.
%K A065583 base,nonn
%O A065583 1,3
%A A065583 _Henry Bottomley_, Nov 28 2001
%E A065583 More terms from _Benoit Cloitre_, Jan 31 2002
%E A065583 More terms from _G. C. Greubel_, Aug 16 2022