This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065585 #23 Mar 03 2021 02:55:51 %S A065585 3,2,223,2221,22229,2222203,22222253,22222223,222222227,22222222273, %T A065585 22222222223,2222222222243,22222222222201,22222222222229, %U A065585 222222222222227,222222222222222043,222222222222222281,222222222222222221,22222222222222222253,222222222222222222277 %N A065585 Smallest prime beginning with exactly n 2's. %H A065585 M. F. Hasler, <a href="/A065585/b065585.txt">Table of n, a(n) for n = 0..200</a> %t A065585 Do[a = Table[2, {n}]; k = 0; While[b = FromDigits[ Join[a, IntegerDigits[k] ]]; First[ IntegerDigits[k]] == 2 || !PrimeQ[b], k++ ]; Print[b], {n, 1, 17} ] %o A065585 (PARI) A065585(n)={n=10^n\9*2; n>2&for(d=1, 9e9, n*=10; for(t=1, 10^d-1, t\10^(d-1)==2 & t+= 10^(d-1)+(t>2); ispseudoprime(n+t) & return(n+t))); 2+!n} \\ _M. F. Hasler_, Oct 17 2012 %o A065585 (Python) %o A065585 from sympy import isprime %o A065585 def a(n): %o A065585 if n < 2: return list([3, 2])[n] %o A065585 n2s, i, pow10, end_digits = int('2'*n), 1, 1, 0 %o A065585 while True: %o A065585 i = 1 %o A065585 while i < pow10: %o A065585 istr = str(i) %o A065585 if istr[0] == '2' and len(istr) == end_digits: %o A065585 i += pow10 // 10 %o A065585 else: %o A065585 t = n2s * pow10 + i %o A065585 if isprime(t): return t %o A065585 i += 2 %o A065585 pow10 *= 10; end_digits += 1 %o A065585 print([a(n) for n in range(20)]) # _Michael S. Branicky_, Mar 02 2021 %Y A065585 Cf. A037057, A065584 - A065592. %Y A065585 A068103 is a lower bound, but most often equality holds. - _M. F. Hasler_, Oct 17 2012 %K A065585 nonn,base %O A065585 0,1 %A A065585 _Robert G. Wilson v_, Nov 28 2001 %E A065585 Corrected by _Don Reble_, Jan 17 2007