This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065602 #28 Jun 01 2022 09:44:03 %S A065602 1,1,1,3,2,1,8,6,3,1,24,18,10,4,1,75,57,33,15,5,1,243,186,111,54,21,6, %T A065602 1,808,622,379,193,82,28,7,1,2742,2120,1312,690,311,118,36,8,1,9458, %U A065602 7338,4596,2476,1164,474,163,45,9,1,33062,25724,16266,8928,4332,1856,692,218,55,10,1 %N A065602 Triangle T(n,k) giving number of hill-free Dyck paths of length 2n and having height of first peak equal to k. %C A065602 A Riordan triangle. %C A065602 Subtriangle of triangle in A167772. - _Philippe Deléham_, Nov 14 2009 %C A065602 Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A000958 and g(x) is the g.f. of A000108. - _Philippe Deléham_, Jan 23 2010 %H A065602 Reinhard Zumkeller, <a href="/A065602/b065602.txt">Rows n = 2..125 of triangle, flattened</a> %H A065602 Emeric Deutsch and L. Shapiro, <a href="https://doi.org/10.1016/S0012-365X(01)00121-2">A survey of the Fine numbers</a>, Discrete Math., 241 (2001), 241-265. %F A065602 T(n, 2) = A000958(n-1). %F A065602 Sum_{k=2..n} T(n, k) = A000957(n+1). %F A065602 From _Emeric Deutsch_, Feb 23 2004: (Start) %F A065602 T(n, k) = Sum_{j=0..floor((n-k)/2)} (k-1+2*j)*binomial(2*n-k-1-2*j, n-1)/(2*n-k-1-2*j). %F A065602 G.f.: t^2*z^2*C/( (1-z^2*C^2)*(1-t*z*C) ), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function. (End) %F A065602 T(n,k) = A167772(n-1,k-1), k=2..n. - _Reinhard Zumkeller_, May 15 2014 %F A065602 From _G. C. Greubel_, May 26 2022: (Start) %F A065602 T(n, n-1) = A000027(n-2). %F A065602 T(n, n-2) = A000217(n-2). %F A065602 T(n, n-3) = A166830(n-3). (End) %e A065602 T(3,2)=1 reflecting the unique Dyck path (UUDUDD) of length 6, with no hills and height of first peak equal to 2. %e A065602 Triangle begins: %e A065602 1; %e A065602 1, 1; %e A065602 3, 2, 1; %e A065602 8, 6, 3, 1; %e A065602 24, 18, 10, 4, 1; %e A065602 75, 57, 33, 15, 5, 1; %e A065602 243, 186, 111, 54, 21, 6, 1; %e A065602 808, 622, 379, 193, 82, 28, 7, 1; %e A065602 2742, 2120, 1312, 690, 311, 118, 36, 8, 1; %p A065602 a := proc(n,k) if n=0 and k=0 then 1 elif k<2 or k>n then 0 else sum((k-1+2*j)*binomial(2*n-k-1-2*j,n-1)/(2*n-k-1-2*j),j=0..floor((n-k)/2)) fi end: seq(seq(a(n,k),k=2..n),n=1..14); %t A065602 nmax = 12; t[n_, k_] := Sum[(k-1+2j)*Binomial[2n-k-1-2j, n-1] / (2n-k-1-2j), {j, 0, (n-k)/2}]; Flatten[ Table[t[n, k], {n, 2, nmax}, {k, 2, n}]] (* _Jean-François Alcover_, Nov 08 2011, after Maple *) %o A065602 (Haskell) %o A065602 a065602 n k = sum %o A065602 [(k-1+2*j) * a007318' (2*n-k-1-2*j) (n-1) `div` (2*n-k-1-2*j) | %o A065602 j <- [0 .. div (n-k) 2]] %o A065602 a065602_row n = map (a065602 n) [2..n] %o A065602 a065602_tabl = map a065602_row [2..] %o A065602 -- _Reinhard Zumkeller_, May 15 2014 %o A065602 (SageMath) %o A065602 def T(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) ) %o A065602 flatten([[T(n,k) for k in (2..n)] for n in (2..12)]) # _G. C. Greubel_, May 26 2022 %Y A065602 Row sums give A000957 (the Fine sequence). %Y A065602 First column is A000958. %Y A065602 Cf. A000108, A007318, A167772. %K A065602 nonn,tabl,easy,nice %O A065602 2,4 %A A065602 _N. J. A. Sloane_, Dec 02 2001 %E A065602 More terms from _Emeric Deutsch_, Feb 23 2004