cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065659 The table of permutations of N, each row induced by the rotation (to the left) of the n-th node in the infinite binary "decimal" fraction tree.

This page as a plain text file.
%I A065659 #5 May 01 2014 02:49:14
%S A065659 4,16,1,22,136,1,64,3,2,1,8,64,25,2,1,160,19,4,3,76,1,1,6,5,4,3,2,1,
%T A065659 256,7,97,5,4,3328,2,1,32,256,13,6,167772160,4,3,2,1,67,1054,8,7,6,5,
%U A065659 4,3,2,1,34,4,9,130,7,97,5,4,3,1249,1,1279,40,10,9,8,7,6,5,4,3,2,1,10,12
%N A065659 The table of permutations of N, each row induced by the rotation (to the left) of the n-th node in the infinite binary "decimal" fraction tree.
%C A065659 See the comment at A065658.
%H A065659 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>
%p A065659 [seq(RotateBinFracLeftTable(j),j=0..119)]; RotateBinFracLeftTable := n -> RotateBinFracNodeLeft(1+(n-((trinv(n)*(trinv(n)-1))/2)),(((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1);
%p A065659 RotateBinFracNodeLeft := (t,n) -> frac2position_in_0_1_SB_tree(RotateBinFracNodeLeft_x(t,SternBrocot0_1frac(n)));
%p A065659 RotateBinFracNodeLeft_x := proc(t,x) local num,den; den := 2^(1+floor_log_2(t)); num := (2*(t-(den/2)))+1; if((x <= (num-1)/den) or (x >= (num+1)/den)) then RETURN(x); fi; if(x >= ((2*num)+1)/(2*den)) then RETURN(((num-1)/den) + (2*(x - (num/den)))); fi; if(x > (num/den)) then RETURN(x - (1/(2*den))); fi; RETURN(((num-1)/den) + ((x-((num-1)/den))/2)); end;
%p A065659 SternBrocot0_1frac := proc(n) local m; m := n + 2^floor_log_2(n); SternBrocotTreeNum(m)/SternBrocotTreeDen(m); end;
%p A065659 frac2position_in_0_1_SB_tree := r -> RETURN(ReflectBinTreePermutation(cfrac2binexp(convert(1/r,confrac))));
%Y A065659 The first row (rotate the top node left): A065661, 2nd row (rotate the top node's left child): A065663, 3rd row (rotate the top node's right child): A065665, 4th row: A065667, 5th row: A065669, 6th row: A065671, 7th row: A065673. Cf. also A065674-A065676. For the other needed Maple procedures follow A065658 which gives the inverse permutations.
%K A065659 nonn,tabl
%O A065659 0,1
%A A065659 _Antti Karttunen_, Nov 22 2001