A065678 Minimum value t such that all quadruples of Diffy_length >= n have a maximal value >= t.
0, 1, 1, 1, 1, 3, 3, 4, 9, 11, 13, 31, 37, 44, 105, 125, 149, 355, 423, 504, 1201, 1431, 1705, 4063, 4841, 5768, 13745, 16377, 19513, 46499, 55403, 66012, 157305, 187427, 223317, 532159, 634061, 755476, 1800281, 2145013, 2555757, 6090307, 7256527
Offset: 0
Examples
Since Diffy_length([0,0,0,0]) = 0 and Diffy_length([0,0,0,1]) = 4, we have A065678(1) = A065678(2) = A065678(3) = A065678(4) = 1.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- A. Behn, C. Kribs-Zaleta and V. Ponomarenko, The convergence of difference boxes, Amer. Math. Monthly 112 (2005), no. 5, 426-439.
- J. Copeland and J. Haemer, Work: Differences Among Women, SunExpert, 1999, pp. 38-43.
- Raymond Greenwell, The Game of Diffy, Math. Gazette, Oct 1989, p. 222.
- Peter J. Kernan (pete(AT)theory2.phys.cwru.edu), Algorithm and code [Broken link]
- Dawn J. Lawrie, The Diffy game.
- Univ. Mass. Computer Science 121, The Diffy Game [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,1,0,0,1).
Crossrefs
Cf. A065677.
Programs
-
PARI
concat(0, Vec(x*(x-1)*(x^8+x^6+x^5+x^4+x^3+3*x^2+2*x+1)/(x^9+x^6+3*x^3-1) + O(x^100))) \\ Colin Barker, Feb 18 2015
Formula
From Colin Barker, Feb 18 2015: (Start)
a(n) = 3*a(n-3)+a(n-6)+a(n-9).
G.f.: x*(x-1)*(x^8+x^6+x^5+x^4+x^3+3*x^2+2*x+1) / (x^9+x^6+3*x^3-1).
(End)
Comments