cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065703 Values of m such that N = (m+1)(2m+1)(71m+1) is a 3-Carmichael number (A087788).

Original entry on oeis.org

1170, 5430, 53568, 59106, 63366, 86370, 95316, 99576, 103836, 105966, 116190, 183498, 184776, 239730, 260178, 300648, 319818, 333450, 339840, 362418, 367530, 481698, 485958, 503850, 511518, 605238, 644856, 725370, 732186, 762006, 788418, 799920, 837408, 870210
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1000000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[71# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(71# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)
  • PARI
    for(m=1,1e6,is_A002997((m+1)*(2*m+1)*(71*m+1)) & print1(m","))  \\ - M. F. Hasler, Aug 23 2012

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

Definition simplified, missing terms inserted, and extended by M. F. Hasler, Aug 23 2012
More terms from Amiram Eldar, Oct 17 2019

A065695 Numbers m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,53.

Original entry on oeis.org

6120, 11526, 104700, 108516, 115830, 122826, 297726, 298680, 320940, 338430, 339066, 367686, 374046, 387720, 448140, 531456, 534636, 538770, 587106, 618270, 709536, 746106, 762006, 857406, 863766, 897156, 963300, 1115940, 1150920
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1000000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[53# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(53# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

More terms from Robert G. Wilson v, Aug 23 2012

A065701 Numbers m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,67.

Original entry on oeis.org

11958, 44118, 88740, 97986, 108438, 184416, 245520, 347628, 348030, 418380, 516870, 542598, 546618, 590436, 637470, 674856, 679680, 767316, 809526, 817566, 818370, 888720, 904800, 914046, 930930, 938568, 1006506, 1020978, 1047510, 1070826, 1081278, 1155246, 1209516
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1250000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[67# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(67# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).
Showing 1-3 of 3 results.