A065746 Number of divisors of squares of all true powers of primes: a(n) = A000005(A025475(n+1)^2).
5, 7, 5, 9, 5, 7, 11, 5, 13, 9, 5, 7, 15, 5, 11, 17, 5, 7, 5, 19, 5, 9, 13, 5, 5, 21, 7, 5, 5, 5, 23, 15, 7, 5, 9, 5, 11, 5, 5, 25, 5, 7, 5, 5, 5, 17, 7, 5, 5, 27, 5, 5, 5, 5, 5, 7, 5, 9, 13, 5, 29, 11, 5, 5, 5, 19, 5, 5, 7, 5, 5, 5, 9, 7, 5, 5, 5, 31, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 21, 5, 33
Offset: 1
Keywords
Examples
tau(p^(2c)) = 2c+1 is prime if c = (odd prime -1)/2 = 1, 2, 3, 5, 6, 8, ... = A005097.
Programs
-
Mathematica
DivisorSigma[0, Select[Range[60000], ! PrimeQ[#] && PrimePowerQ[#] &]^2] (* Amiram Eldar, Apr 13 2024 *)
Formula
tau(p^(2c)), where tau is the number of divisors, c > 1 and p is prime.
Extensions
Name corrected by Amiram Eldar, Apr 13 2024