cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065754 Second column of A065748.

Original entry on oeis.org

4, 88, 7308, 1691024, 889922900, 927968206536, 1736907362701852, 5418843464230116352, 26603238870832186065636, 196293745325282121998886200, 2096654942154151785036724164524
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Crossrefs

A065747 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 3, 3, 7, 30, 51, 42, 15, 145, 753, 1656, 1995, 1410, 567, 105, 6631, 39048, 100704, 149394, 140475, 86562, 34566, 8316, 945, 566641, 3656439, 10546413, 17972598, 20133921, 15581349, 8493555, 3246642, 841239, 135135, 10395
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001

Keywords

Comments

First column is A064624.

Examples

			Triangle starts
1;
1, 3, 3;
7, 30, 51, 42, 15;
145, 753, 1656, 1995, 1410, 567, 105;
6631 ...
		

Crossrefs

Formula

Let B(X, n) = X^3 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^3; then the (i, j)-th entry is the table is the coefficient of X^(2+j) in B(X, i).

A065755 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 31, 230, 755, 1440, 1760, 1430, 770, 260, 45, 6721, 60655, 250665, 628535, 1067865, 1299570, 1166945, 783720, 393855, 146025, 38500, 6630, 585, 5850271, 59885980, 285597890, 843288660, 1727996845, 2610132070, 3012643620
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Comments

First column is A065756. Second column is A065757.

Examples

			Irregular triangle begins:
1;
1,      5,  10,   10,    5;
31,   230, 755, 1440, 1760, 1430, 770, 260, 45;
6721, ...
		

Crossrefs

Programs

  • Mathematica
    B[X_, 1] := X^5; B[X_, n_] := B[X, n] = X^5 (B[X+1, n-1] - B[X, n-1]) // Expand; row[1] = {1}; row[n_] := List @@ B[X, n] /. X -> 1; Array[row, 5] // Flatten (* Jean-François Alcover, Jul 08 2017 *)

Formula

Let B(X, n) = X^5 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^5; then the (i, j)-th entry in the table is the coefficient of X^(4+j) in B(X, i).
Showing 1-3 of 3 results.