cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A065755 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 31, 230, 755, 1440, 1760, 1430, 770, 260, 45, 6721, 60655, 250665, 628535, 1067865, 1299570, 1166945, 783720, 393855, 146025, 38500, 6630, 585, 5850271, 59885980, 285597890, 843288660, 1727996845, 2610132070, 3012643620
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Comments

First column is A065756. Second column is A065757.

Examples

			Irregular triangle begins:
1;
1,      5,  10,   10,    5;
31,   230, 755, 1440, 1760, 1430, 770, 260, 45;
6721, ...
		

Crossrefs

Programs

  • Mathematica
    B[X_, 1] := X^5; B[X_, n_] := B[X, n] = X^5 (B[X+1, n-1] - B[X, n-1]) // Expand; row[1] = {1}; row[n_] := List @@ B[X, n] /. X -> 1; Array[row, 5] // Flatten (* Jean-François Alcover, Jul 08 2017 *)

Formula

Let B(X, n) = X^5 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^5; then the (i, j)-th entry in the table is the coefficient of X^(4+j) in B(X, i).

A065756 Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^5 A(n, r + 1) - (r - 1)^5 A(n, r); A(1,r) = r^5 - (r-1)^5.

Original entry on oeis.org

1, 1, 31, 6721, 5850271, 15060446401, 94396946822431, 1258620297379341121, 32323181593821704288671, 1481630482369728860007652801, 114129022540066183425609121804831
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^5*a[n-1, r+1]-(r-1)^5*a[n-1, r]; a[1, r_ /; r >= 0] := r^5-(r-1)^5; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, May 23 2013 *)

Formula

a(n) = A(n-1, 1) for the above Gandhi polynomials.
Showing 1-2 of 2 results.